April  2016, 36(4): 2205-2227. doi: 10.3934/dcds.2016.36.2205

Spike vector solutions for some coupled nonlinear Schrödinger equations

1. 

Department of Mathematics, Central China Normal University, Wuhan 430079

2. 

Center for Partial Differential Equations, East China Normal University, Shanghai, 200241, China

Received  February 2014 Revised  July 2015 Published  September 2015

We consider spike vector solutions for the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^{2}\Delta u+P(x)u=\mu u^{3}+\beta v^2u \ \hbox{in}\ \mathbb{R}^3,\\ -\varepsilon^{2}\Delta v+Q(x)v=\nu v^{3} +\beta u^2v \ \ \hbox{in}\ \mathbb{R}^3,\\ u, v >0 \,\ \hbox{in}\ \mathbb{R}^3, \end{array} \right. \end{equation*} where $\varepsilon > 0$ is a small parameter, $P(x)$ and $Q(x)$ are positive potentials, $\mu>0, \nu>0$ are positive constants and $\beta\neq 0$ is a coupling constant. We investigate the effect of potentials and the nonlinear coupling on the solution structure. For any positive integer $k\ge 2$, we construct $k$ interacting spikes concentrating near the local maximum point $x_{0}$ of $P(x)$ and $Q(x)$ when $P(x_{0})=Q(x_{0})$ in the attractive case. In contrast, for any two positive integers $k\ge 2$ and $m\ge 2$, we construct $k$ interacting spikes for $u$ near the local maximum point $x_{0}$ of $P(x)$ and $m$ interacting spikes for $v$ near the local maximum point $\bar{x}_{0}$ of $Q(x)$ respectively when $x_{0}\neq \bar{x}_{0}$, moreover, spikes of $u$ and $v$ repel each other. Meanwhile, we prove the attractive phenomenon for $\beta < 0$ and the repulsive phenomenon for $\beta > 0$.
Citation: Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205
References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[4]

A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equation,, Calc. Var. Partial Differ. Equ., 30 (2007), 85.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[5]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equation on $\mathbbR^N$,, J. Funct. Anal., 254 (2008), 2816.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic systemm,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200.   Google Scholar

[8]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity,, Comm. Partial Differential Equations, 34 (2009), 1566.  doi: 10.1080/03605300903346721.  Google Scholar

[10]

S. Chang, C. S. Lin, T. C. Lin and W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.  doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

M. Conti, S. Terracini and G. Verzini, Neharis problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871.  doi: 10.1016/S0294-1449(02)00104-X.  Google Scholar

[12]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[13]

N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[14]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[15]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 25 (2008), 149.  doi: 10.1016/j.anihpc.2006.11.006.  Google Scholar

[16]

S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions,, Science, 300 (2003), 1723.  doi: 10.1126/science.1085335.  Google Scholar

[17]

D. S. Hall, R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Collected Papers of Carl Wieman, (2008), 515.  doi: 10.1142/9789812813787_0071.  Google Scholar

[18]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[20]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Differential Equations, 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[21]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[22]

Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Stud., 10 (2010), 175.   Google Scholar

[23]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for weakly coupled nonlinear Schrödinger systems,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[24]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41.  doi: 10.4171/JEMS/103.  Google Scholar

[25]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Collected Papers of Carl Wieman, (2008), 489.  doi: 10.1142/9789812813787_0066.  Google Scholar

[26]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.   Google Scholar

[27]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem,, J. London Math. Soc., 62 (2000), 213.  doi: 10.1112/S002461070000898X.  Google Scholar

[28]

S. Peng and Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305.  doi: 10.1007/s00205-012-0598-0.  Google Scholar

[29]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

S. Terracini and G. Verzini, Multipulse phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Ration. Mech. Anal., 194 (2009), 717.  doi: 10.1007/s00205-008-0172-y.  Google Scholar

[33]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[34]

E. Timmermans, Phase seperation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718.   Google Scholar

show all references

References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[4]

A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equation,, Calc. Var. Partial Differ. Equ., 30 (2007), 85.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[5]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equation on $\mathbbR^N$,, J. Funct. Anal., 254 (2008), 2816.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic systemm,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200.   Google Scholar

[8]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity,, Comm. Partial Differential Equations, 34 (2009), 1566.  doi: 10.1080/03605300903346721.  Google Scholar

[10]

S. Chang, C. S. Lin, T. C. Lin and W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.  doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

M. Conti, S. Terracini and G. Verzini, Neharis problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871.  doi: 10.1016/S0294-1449(02)00104-X.  Google Scholar

[12]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[13]

N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[14]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[15]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 25 (2008), 149.  doi: 10.1016/j.anihpc.2006.11.006.  Google Scholar

[16]

S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions,, Science, 300 (2003), 1723.  doi: 10.1126/science.1085335.  Google Scholar

[17]

D. S. Hall, R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Collected Papers of Carl Wieman, (2008), 515.  doi: 10.1142/9789812813787_0071.  Google Scholar

[18]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[20]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Differential Equations, 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[21]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[22]

Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Stud., 10 (2010), 175.   Google Scholar

[23]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for weakly coupled nonlinear Schrödinger systems,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[24]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41.  doi: 10.4171/JEMS/103.  Google Scholar

[25]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Collected Papers of Carl Wieman, (2008), 489.  doi: 10.1142/9789812813787_0066.  Google Scholar

[26]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267.   Google Scholar

[27]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem,, J. London Math. Soc., 62 (2000), 213.  doi: 10.1112/S002461070000898X.  Google Scholar

[28]

S. Peng and Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305.  doi: 10.1007/s00205-012-0598-0.  Google Scholar

[29]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

S. Terracini and G. Verzini, Multipulse phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Ration. Mech. Anal., 194 (2009), 717.  doi: 10.1007/s00205-008-0172-y.  Google Scholar

[33]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[34]

E. Timmermans, Phase seperation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718.   Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]