April  2016, 36(4): 2205-2227. doi: 10.3934/dcds.2016.36.2205

Spike vector solutions for some coupled nonlinear Schrödinger equations

1. 

Department of Mathematics, Central China Normal University, Wuhan 430079

2. 

Center for Partial Differential Equations, East China Normal University, Shanghai, 200241, China

Received  February 2014 Revised  July 2015 Published  September 2015

We consider spike vector solutions for the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^{2}\Delta u+P(x)u=\mu u^{3}+\beta v^2u \ \hbox{in}\ \mathbb{R}^3,\\ -\varepsilon^{2}\Delta v+Q(x)v=\nu v^{3} +\beta u^2v \ \ \hbox{in}\ \mathbb{R}^3,\\ u, v >0 \,\ \hbox{in}\ \mathbb{R}^3, \end{array} \right. \end{equation*} where $\varepsilon > 0$ is a small parameter, $P(x)$ and $Q(x)$ are positive potentials, $\mu>0, \nu>0$ are positive constants and $\beta\neq 0$ is a coupling constant. We investigate the effect of potentials and the nonlinear coupling on the solution structure. For any positive integer $k\ge 2$, we construct $k$ interacting spikes concentrating near the local maximum point $x_{0}$ of $P(x)$ and $Q(x)$ when $P(x_{0})=Q(x_{0})$ in the attractive case. In contrast, for any two positive integers $k\ge 2$ and $m\ge 2$, we construct $k$ interacting spikes for $u$ near the local maximum point $x_{0}$ of $P(x)$ and $m$ interacting spikes for $v$ near the local maximum point $\bar{x}_{0}$ of $Q(x)$ respectively when $x_{0}\neq \bar{x}_{0}$, moreover, spikes of $u$ and $v$ repel each other. Meanwhile, we prove the attractive phenomenon for $\beta < 0$ and the repulsive phenomenon for $\beta > 0$.
Citation: Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205
References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661. doi: 10.1103/PhysRevLett.82.2661. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar

[4]

A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equation,, Calc. Var. Partial Differ. Equ., 30 (2007), 85. doi: 10.1007/s00526-006-0079-0. Google Scholar

[5]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equation on $\mathbbR^N$,, J. Funct. Anal., 254 (2008), 2816. doi: 10.1016/j.jfa.2007.11.013. Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic systemm,, Calc. Var. Partial Differential Equations, 37 (2010), 345. doi: 10.1007/s00526-009-0265-y. Google Scholar

[7]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar

[8]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity,, Comm. Partial Differential Equations, 34 (2009), 1566. doi: 10.1080/03605300903346721. Google Scholar

[10]

S. Chang, C. S. Lin, T. C. Lin and W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341. doi: 10.1016/j.physd.2004.06.002. Google Scholar

[11]

M. Conti, S. Terracini and G. Verzini, Neharis problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871. doi: 10.1016/S0294-1449(02)00104-X. Google Scholar

[12]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189. doi: 10.1090/S0002-9947-08-04735-1. Google Scholar

[13]

N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. doi: 10.1016/j.anihpc.2010.01.009. Google Scholar

[14]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar

[15]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 25 (2008), 149. doi: 10.1016/j.anihpc.2006.11.006. Google Scholar

[16]

S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions,, Science, 300 (2003), 1723. doi: 10.1126/science.1085335. Google Scholar

[17]

D. S. Hall, R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Collected Papers of Carl Wieman, (2008), 515. doi: 10.1142/9789812813787_0071. Google Scholar

[18]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq3$,, Commun. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar

[19]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. doi: 10.1016/j.anihpc.2004.03.004. Google Scholar

[20]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Differential Equations, 229 (2006), 538. doi: 10.1016/j.jde.2005.12.011. Google Scholar

[21]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar

[22]

Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Stud., 10 (2010), 175. Google Scholar

[23]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for weakly coupled nonlinear Schrödinger systems,, J. Differential Equations, 229 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar

[24]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. doi: 10.4171/JEMS/103. Google Scholar

[25]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Collected Papers of Carl Wieman, (2008), 489. doi: 10.1142/9789812813787_0066. Google Scholar

[26]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267. Google Scholar

[27]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem,, J. London Math. Soc., 62 (2000), 213. doi: 10.1112/S002461070000898X. Google Scholar

[28]

S. Peng and Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305. doi: 10.1007/s00205-012-0598-0. Google Scholar

[29]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258. doi: 10.1016/j.jde.2005.09.002. Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1. doi: 10.1016/0022-1236(90)90002-3. Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar

[32]

S. Terracini and G. Verzini, Multipulse phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Ration. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar

[33]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203. Google Scholar

[34]

E. Timmermans, Phase seperation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718. Google Scholar

show all references

References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661. doi: 10.1103/PhysRevLett.82.2661. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar

[4]

A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equation,, Calc. Var. Partial Differ. Equ., 30 (2007), 85. doi: 10.1007/s00526-006-0079-0. Google Scholar

[5]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equation on $\mathbbR^N$,, J. Funct. Anal., 254 (2008), 2816. doi: 10.1016/j.jfa.2007.11.013. Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic systemm,, Calc. Var. Partial Differential Equations, 37 (2010), 345. doi: 10.1007/s00526-009-0265-y. Google Scholar

[7]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar

[8]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity,, Comm. Partial Differential Equations, 34 (2009), 1566. doi: 10.1080/03605300903346721. Google Scholar

[10]

S. Chang, C. S. Lin, T. C. Lin and W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341. doi: 10.1016/j.physd.2004.06.002. Google Scholar

[11]

M. Conti, S. Terracini and G. Verzini, Neharis problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871. doi: 10.1016/S0294-1449(02)00104-X. Google Scholar

[12]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189. doi: 10.1090/S0002-9947-08-04735-1. Google Scholar

[13]

N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. doi: 10.1016/j.anihpc.2010.01.009. Google Scholar

[14]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar

[15]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 25 (2008), 149. doi: 10.1016/j.anihpc.2006.11.006. Google Scholar

[16]

S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions,, Science, 300 (2003), 1723. doi: 10.1126/science.1085335. Google Scholar

[17]

D. S. Hall, R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates,, Collected Papers of Carl Wieman, (2008), 515. doi: 10.1142/9789812813787_0071. Google Scholar

[18]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq3$,, Commun. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar

[19]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. doi: 10.1016/j.anihpc.2004.03.004. Google Scholar

[20]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Differential Equations, 229 (2006), 538. doi: 10.1016/j.jde.2005.12.011. Google Scholar

[21]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar

[22]

Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Stud., 10 (2010), 175. Google Scholar

[23]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for weakly coupled nonlinear Schrödinger systems,, J. Differential Equations, 229 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar

[24]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. doi: 10.4171/JEMS/103. Google Scholar

[25]

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling,, Collected Papers of Carl Wieman, (2008), 489. doi: 10.1142/9789812813787_0066. Google Scholar

[26]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure Appl. Math., 63 (2010), 267. Google Scholar

[27]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem,, J. London Math. Soc., 62 (2000), 213. doi: 10.1112/S002461070000898X. Google Scholar

[28]

S. Peng and Z.-Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305. doi: 10.1007/s00205-012-0598-0. Google Scholar

[29]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258. doi: 10.1016/j.jde.2005.09.002. Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1. doi: 10.1016/0022-1236(90)90002-3. Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar

[32]

S. Terracini and G. Verzini, Multipulse phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Ration. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar

[33]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203. Google Scholar

[34]

E. Timmermans, Phase seperation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718. Google Scholar

[1]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[2]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[3]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[4]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[5]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[6]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[7]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[8]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[9]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[10]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[11]

Jing Cui, Shu-Ming Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control & Related Fields, 2019, 9 (2) : 351-384. doi: 10.3934/mcrf.2019017

[12]

Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138

[13]

Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265

[14]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[15]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[16]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[17]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[18]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[19]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[20]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]