Citation: |
[1] |
D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing, Nonlinearity, 15 (2002), 1281-1297.doi: 10.1088/0951-7715/15/4/314. |
[2] |
T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations, Proc. Amer. Math. Soc., 29 (1971), 277-283. |
[3] |
G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations, J. Differential Equations, 22 (1976), 467-477.doi: 10.1016/0022-0396(76)90041-3. |
[4] |
A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181 (2002), 419-438.doi: 10.1006/jdeq.2001.4080. |
[5] |
T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.doi: 10.1016/0022-0396(92)90076-Y. |
[6] |
J. Hale, Ordinary Differential Equation, Robert E. Krieger Publishing Co., Inc., Huntington, 1980. |
[7] |
M. Jiang, Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 19 (2006), 1165-1183.doi: 10.1088/0951-7715/19/5/007. |
[8] |
M. Kunze, Non-Smooth Dynamical Systems, Spring-Verlag, New York, 2000.doi: 10.1007/BFb0103843. |
[9] |
H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator, Physica D, 82 (1995), 117-135.doi: 10.1016/0167-2789(94)00222-C. |
[10] |
A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differential and Integral Equations, 5 (1992), 165-172.doi: 10.2307/2152750. |
[11] |
Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles, J. Math. Anal. Appl., 365 (2010), 67-74.doi: 10.1016/j.jmaa.2009.09.054. |
[12] |
G. Luo and J. Xie, Bifurcations and chaos in a system with impacts, Physica D, 148 (2001), 183-200.doi: 10.1016/S0167-2789(00)00170-6. |
[13] |
D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign, J. Math. Anal. Appl, 247 (2000), 217-235.doi: 10.1006/jmaa.2000.6849. |
[14] |
D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43-63. |
[15] |
D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem, Topol. Methods Nonlinear Anal., 15 (2000), 203-233. |
[16] |
M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, Cambridge Univercity Press, Cambridge, UK, 1998.doi: 10.1017/CBO9781139173049. |
[17] |
D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797-1804.doi: 10.1090/S0002-9939-04-07759-7. |
[18] |
D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.doi: 10.1137/S003614100343771X. |
[19] |
D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201-213.doi: 10.1017/S0308210500003164. |
[20] |
A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators, SIAM J. Appl. Dyn. Syst., 12 (2013), 383-414.doi: 10.1137/120880902. |
[21] |
S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions, Phy. Rev. Lett., 51 (1983), 623-626.doi: 10.1103/PhysRevLett.51.623. |
[22] |
R. Srzednicki, On geometric detection of periodic solutions and chaos, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), CISM Courses and Lectures, Springer, Vienna, 371 (1996), 197-209. |
[23] |
C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations, (in Chinese) Sci. Sin. Math., 44 (2014), 235-248. |
[24] |
V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts, Comm. Math. Phys., 211 (2000), 289-302.doi: 10.1007/s002200050813. |