April  2016, 36(4): 2305-2328. doi: 10.3934/dcds.2016.36.2305

Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics

1. 

School of Mathematic Science, Yancheng Teacher's University, Yancheng 224001, China

2. 

School of Mathematical Sciences, Soochow University, Suzhou 215006

3. 

School of Mathematics and Computing Sciences, Guilin University of Electronic Technology, Guilin, 541003, China

Received  November 2014 Revised  July 2015 Published  September 2015

In this paper, we are concerned with superlinear impact oscillators of Hill's type with indefinite weight $$ \left\{\begin{array}{lll} x''+f(x)x'+q(t)g(x)=0, ~\text{for}~ x(t)>0;\\ x(t)\geq0;\\ x'(t_0+)=-x'(t_0-),~\text{if}~x(t_0)=0,\end{array}\right.$$ where the indefinite weight $q(t)$, defined in $(a,b)$ with $-\infty\leq a< b \leq+\infty,$ has infinitely many zeros in $(a,b),$ $g$ is superlinear and $f$ is bounded. We prove the existence of globally defined bouncing solutions with prescribed number of impacts in the intervals of negativity and positivity of $q$. Furthermore, we show that when $q$ is periodic, the equation under consideration exhibits an interesting phenomenon of chaotic-like dynamics. Finally, in case that $q$ is even and periodic, we prove the existence and multiplicity of the even and periodic bouncing solutions for the Hill's type equation in case of $f\equiv0.$
Citation: Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305
References:
[1]

D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing,, Nonlinearity, 15 (2002), 1281.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations,, Proc. Amer. Math. Soc., 29 (1971), 277.   Google Scholar

[3]

G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations,, J. Differential Equations, 22 (1976), 467.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[4]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Differential Equations, 181 (2002), 419.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[5]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[6]

J. Hale, Ordinary Differential Equation,, Robert E. Krieger Publishing Co., (1980).   Google Scholar

[7]

M. Jiang, Periodic solutions of second order differential equations with an obstacle,, Nonlinearity, 19 (2006), 1165.  doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[8]

M. Kunze, Non-Smooth Dynamical Systems,, Spring-Verlag, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[9]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[10]

A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle,, Differential and Integral Equations, 5 (1992), 165.  doi: 10.2307/2152750.  Google Scholar

[11]

Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles,, J. Math. Anal. Appl., 365 (2010), 67.  doi: 10.1016/j.jmaa.2009.09.054.  Google Scholar

[12]

G. Luo and J. Xie, Bifurcations and chaos in a system with impacts,, Physica D, 148 (2001), 183.  doi: 10.1016/S0167-2789(00)00170-6.  Google Scholar

[13]

D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign,, J. Math. Anal. Appl, 247 (2000), 217.  doi: 10.1006/jmaa.2000.6849.  Google Scholar

[14]

D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight,, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43.   Google Scholar

[15]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem,, Topol. Methods Nonlinear Anal., 15 (2000), 203.   Google Scholar

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, Cambridge Univercity Press, (1998).  doi: 10.1017/CBO9781139173049.  Google Scholar

[17]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[18]

D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[19]

D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[20]

A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators,, SIAM J. Appl. Dyn. Syst., 12 (2013), 383.  doi: 10.1137/120880902.  Google Scholar

[21]

S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions,, Phy. Rev. Lett., 51 (1983), 623.  doi: 10.1103/PhysRevLett.51.623.  Google Scholar

[22]

R. Srzednicki, On geometric detection of periodic solutions and chaos,, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), 371 (1996), 197.   Google Scholar

[23]

C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations,, (in Chinese) Sci. Sin. Math., 44 (2014), 235.   Google Scholar

[24]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

show all references

References:
[1]

D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing,, Nonlinearity, 15 (2002), 1281.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations,, Proc. Amer. Math. Soc., 29 (1971), 277.   Google Scholar

[3]

G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations,, J. Differential Equations, 22 (1976), 467.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[4]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Differential Equations, 181 (2002), 419.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[5]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[6]

J. Hale, Ordinary Differential Equation,, Robert E. Krieger Publishing Co., (1980).   Google Scholar

[7]

M. Jiang, Periodic solutions of second order differential equations with an obstacle,, Nonlinearity, 19 (2006), 1165.  doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[8]

M. Kunze, Non-Smooth Dynamical Systems,, Spring-Verlag, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[9]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[10]

A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle,, Differential and Integral Equations, 5 (1992), 165.  doi: 10.2307/2152750.  Google Scholar

[11]

Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles,, J. Math. Anal. Appl., 365 (2010), 67.  doi: 10.1016/j.jmaa.2009.09.054.  Google Scholar

[12]

G. Luo and J. Xie, Bifurcations and chaos in a system with impacts,, Physica D, 148 (2001), 183.  doi: 10.1016/S0167-2789(00)00170-6.  Google Scholar

[13]

D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign,, J. Math. Anal. Appl, 247 (2000), 217.  doi: 10.1006/jmaa.2000.6849.  Google Scholar

[14]

D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight,, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43.   Google Scholar

[15]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem,, Topol. Methods Nonlinear Anal., 15 (2000), 203.   Google Scholar

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, Cambridge Univercity Press, (1998).  doi: 10.1017/CBO9781139173049.  Google Scholar

[17]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[18]

D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[19]

D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[20]

A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators,, SIAM J. Appl. Dyn. Syst., 12 (2013), 383.  doi: 10.1137/120880902.  Google Scholar

[21]

S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions,, Phy. Rev. Lett., 51 (1983), 623.  doi: 10.1103/PhysRevLett.51.623.  Google Scholar

[22]

R. Srzednicki, On geometric detection of periodic solutions and chaos,, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), 371 (1996), 197.   Google Scholar

[23]

C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations,, (in Chinese) Sci. Sin. Math., 44 (2014), 235.   Google Scholar

[24]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]