\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics

Abstract Related Papers Cited by
  • In this paper, we are concerned with superlinear impact oscillators of Hill's type with indefinite weight $$ \left\{\begin{array}{lll} x''+f(x)x'+q(t)g(x)=0, ~\text{for}~ x(t)>0;\\ x(t)\geq0;\\ x'(t_0+)=-x'(t_0-),~\text{if}~x(t_0)=0,\end{array}\right.$$ where the indefinite weight $q(t)$, defined in $(a,b)$ with $-\infty\leq a< b \leq+\infty,$ has infinitely many zeros in $(a,b),$ $g$ is superlinear and $f$ is bounded. We prove the existence of globally defined bouncing solutions with prescribed number of impacts in the intervals of negativity and positivity of $q$. Furthermore, we show that when $q$ is periodic, the equation under consideration exhibits an interesting phenomenon of chaotic-like dynamics. Finally, in case that $q$ is even and periodic, we prove the existence and multiplicity of the even and periodic bouncing solutions for the Hill's type equation in case of $f\equiv0.$
    Mathematics Subject Classification: Primary: 34C15, 34C28; Secondary: 54H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing, Nonlinearity, 15 (2002), 1281-1297.doi: 10.1088/0951-7715/15/4/314.

    [2]

    T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations, Proc. Amer. Math. Soc., 29 (1971), 277-283.

    [3]

    G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations, J. Differential Equations, 22 (1976), 467-477.doi: 10.1016/0022-0396(76)90041-3.

    [4]

    A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181 (2002), 419-438.doi: 10.1006/jdeq.2001.4080.

    [5]

    T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.doi: 10.1016/0022-0396(92)90076-Y.

    [6]

    J. Hale, Ordinary Differential Equation, Robert E. Krieger Publishing Co., Inc., Huntington, 1980.

    [7]

    M. Jiang, Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 19 (2006), 1165-1183.doi: 10.1088/0951-7715/19/5/007.

    [8]

    M. Kunze, Non-Smooth Dynamical Systems, Spring-Verlag, New York, 2000.doi: 10.1007/BFb0103843.

    [9]

    H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator, Physica D, 82 (1995), 117-135.doi: 10.1016/0167-2789(94)00222-C.

    [10]

    A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differential and Integral Equations, 5 (1992), 165-172.doi: 10.2307/2152750.

    [11]

    Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles, J. Math. Anal. Appl., 365 (2010), 67-74.doi: 10.1016/j.jmaa.2009.09.054.

    [12]

    G. Luo and J. Xie, Bifurcations and chaos in a system with impacts, Physica D, 148 (2001), 183-200.doi: 10.1016/S0167-2789(00)00170-6.

    [13]

    D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign, J. Math. Anal. Appl, 247 (2000), 217-235.doi: 10.1006/jmaa.2000.6849.

    [14]

    D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43-63.

    [15]

    D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem, Topol. Methods Nonlinear Anal., 15 (2000), 203-233.

    [16]

    M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, Cambridge Univercity Press, Cambridge, UK, 1998.doi: 10.1017/CBO9781139173049.

    [17]

    D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797-1804.doi: 10.1090/S0002-9939-04-07759-7.

    [18]

    D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.doi: 10.1137/S003614100343771X.

    [19]

    D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201-213.doi: 10.1017/S0308210500003164.

    [20]

    A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators, SIAM J. Appl. Dyn. Syst., 12 (2013), 383-414.doi: 10.1137/120880902.

    [21]

    S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions, Phy. Rev. Lett., 51 (1983), 623-626.doi: 10.1103/PhysRevLett.51.623.

    [22]

    R. Srzednicki, On geometric detection of periodic solutions and chaos, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), CISM Courses and Lectures, Springer, Vienna, 371 (1996), 197-209.

    [23]

    C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations, (in Chinese) Sci. Sin. Math., 44 (2014), 235-248.

    [24]

    V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts, Comm. Math. Phys., 211 (2000), 289-302.doi: 10.1007/s002200050813.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return