April  2016, 36(4): 2305-2328. doi: 10.3934/dcds.2016.36.2305

Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics

1. 

School of Mathematic Science, Yancheng Teacher's University, Yancheng 224001, China

2. 

School of Mathematical Sciences, Soochow University, Suzhou 215006

3. 

School of Mathematics and Computing Sciences, Guilin University of Electronic Technology, Guilin, 541003, China

Received  November 2014 Revised  July 2015 Published  September 2015

In this paper, we are concerned with superlinear impact oscillators of Hill's type with indefinite weight $$ \left\{\begin{array}{lll} x''+f(x)x'+q(t)g(x)=0, ~\text{for}~ x(t)>0;\\ x(t)\geq0;\\ x'(t_0+)=-x'(t_0-),~\text{if}~x(t_0)=0,\end{array}\right.$$ where the indefinite weight $q(t)$, defined in $(a,b)$ with $-\infty\leq a< b \leq+\infty,$ has infinitely many zeros in $(a,b),$ $g$ is superlinear and $f$ is bounded. We prove the existence of globally defined bouncing solutions with prescribed number of impacts in the intervals of negativity and positivity of $q$. Furthermore, we show that when $q$ is periodic, the equation under consideration exhibits an interesting phenomenon of chaotic-like dynamics. Finally, in case that $q$ is even and periodic, we prove the existence and multiplicity of the even and periodic bouncing solutions for the Hill's type equation in case of $f\equiv0.$
Citation: Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305
References:
[1]

D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing,, Nonlinearity, 15 (2002), 1281.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations,, Proc. Amer. Math. Soc., 29 (1971), 277.   Google Scholar

[3]

G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations,, J. Differential Equations, 22 (1976), 467.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[4]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Differential Equations, 181 (2002), 419.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[5]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[6]

J. Hale, Ordinary Differential Equation,, Robert E. Krieger Publishing Co., (1980).   Google Scholar

[7]

M. Jiang, Periodic solutions of second order differential equations with an obstacle,, Nonlinearity, 19 (2006), 1165.  doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[8]

M. Kunze, Non-Smooth Dynamical Systems,, Spring-Verlag, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[9]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[10]

A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle,, Differential and Integral Equations, 5 (1992), 165.  doi: 10.2307/2152750.  Google Scholar

[11]

Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles,, J. Math. Anal. Appl., 365 (2010), 67.  doi: 10.1016/j.jmaa.2009.09.054.  Google Scholar

[12]

G. Luo and J. Xie, Bifurcations and chaos in a system with impacts,, Physica D, 148 (2001), 183.  doi: 10.1016/S0167-2789(00)00170-6.  Google Scholar

[13]

D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign,, J. Math. Anal. Appl, 247 (2000), 217.  doi: 10.1006/jmaa.2000.6849.  Google Scholar

[14]

D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight,, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43.   Google Scholar

[15]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem,, Topol. Methods Nonlinear Anal., 15 (2000), 203.   Google Scholar

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, Cambridge Univercity Press, (1998).  doi: 10.1017/CBO9781139173049.  Google Scholar

[17]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[18]

D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[19]

D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[20]

A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators,, SIAM J. Appl. Dyn. Syst., 12 (2013), 383.  doi: 10.1137/120880902.  Google Scholar

[21]

S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions,, Phy. Rev. Lett., 51 (1983), 623.  doi: 10.1103/PhysRevLett.51.623.  Google Scholar

[22]

R. Srzednicki, On geometric detection of periodic solutions and chaos,, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), 371 (1996), 197.   Google Scholar

[23]

C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations,, (in Chinese) Sci. Sin. Math., 44 (2014), 235.   Google Scholar

[24]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

show all references

References:
[1]

D. Bonheune and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing,, Nonlinearity, 15 (2002), 1281.  doi: 10.1088/0951-7715/15/4/314.  Google Scholar

[2]

T. Burton and R. Grimmer, On the continuability of solutions of second-order differential equations,, Proc. Amer. Math. Soc., 29 (1971), 277.   Google Scholar

[3]

G. J. Butler, Rapid oscillation, nonextendability and the existence of periodic solutions to second-order nonlinear differential equations,, J. Differential Equations, 22 (1976), 467.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[4]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Differential Equations, 181 (2002), 419.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[5]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[6]

J. Hale, Ordinary Differential Equation,, Robert E. Krieger Publishing Co., (1980).   Google Scholar

[7]

M. Jiang, Periodic solutions of second order differential equations with an obstacle,, Nonlinearity, 19 (2006), 1165.  doi: 10.1088/0951-7715/19/5/007.  Google Scholar

[8]

M. Kunze, Non-Smooth Dynamical Systems,, Spring-Verlag, (2000).  doi: 10.1007/BFb0103843.  Google Scholar

[9]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[10]

A. Lazer and P. McKenna, Periodic bouncing for a forced linear spring with obstacle,, Differential and Integral Equations, 5 (1992), 165.  doi: 10.2307/2152750.  Google Scholar

[11]

Q. Liu and Z. Wang, Periodic impact behavior of a class of Hamiltonian oscillators with obstacles,, J. Math. Anal. Appl., 365 (2010), 67.  doi: 10.1016/j.jmaa.2009.09.054.  Google Scholar

[12]

G. Luo and J. Xie, Bifurcations and chaos in a system with impacts,, Physica D, 148 (2001), 183.  doi: 10.1016/S0167-2789(00)00170-6.  Google Scholar

[13]

D. Papini, Infinitely many solutions for a Floquet-type BVP with superlinearity indefinite in sign,, J. Math. Anal. Appl, 247 (2000), 217.  doi: 10.1006/jmaa.2000.6849.  Google Scholar

[14]

D. Papini, Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight,, Atti. Sem. Mat. Fis. Univ. Modena., 51 (2003), 43.   Google Scholar

[15]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary-value problem,, Topol. Methods Nonlinear Anal., 15 (2000), 203.   Google Scholar

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, Cambridge Univercity Press, (1998).  doi: 10.1017/CBO9781139173049.  Google Scholar

[17]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[18]

D. Qian and P. Torres, Periodic motions of linear impact oscillators via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[19]

D. Qian and P. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edingburgh Sect. A, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[20]

A. Ruiz-Herrera and P. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators,, SIAM J. Appl. Dyn. Syst., 12 (2013), 383.  doi: 10.1137/120880902.  Google Scholar

[21]

S. W. Shaw and P. Holmes, Periodically forced linear oscillator with impact: Chaos and long-period motions,, Phy. Rev. Lett., 51 (1983), 623.  doi: 10.1103/PhysRevLett.51.623.  Google Scholar

[22]

R. Srzednicki, On geometric detection of periodic solutions and chaos,, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), 371 (1996), 197.   Google Scholar

[23]

C. Wang, The periodic motions of a class of symmetric superlinear Hill's impact equations,, (in Chinese) Sci. Sin. Math., 44 (2014), 235.   Google Scholar

[24]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

[1]

E. N. Dancer. On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3861-3869. doi: 10.3934/dcds.2012.32.3861

[2]

Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049

[3]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[4]

Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252

[5]

Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645

[6]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[7]

Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028

[8]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[9]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[10]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[11]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[12]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[13]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[14]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[15]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020044

[16]

Nikolaos S. Papageorgiou, Vicenšiu D. Rădulescu, Dušan D. Repovš. Robin problems with indefinite linear part and competition phenomena. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1293-1314. doi: 10.3934/cpaa.2017063

[17]

Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943

[18]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[19]

Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463

[20]

Naveen K. Vaidya, Xianping Li, Feng-Bin Wang. Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 321-349. doi: 10.3934/dcdsb.2018099

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]