April  2016, 36(4): 2329-2346. doi: 10.3934/dcds.2016.36.2329

Entire solutions with merging fronts to a bistable periodic lattice dynamical system

1. 

Department of Mathematics, Xidian University, Xi’an, Shaanxi 710071

2. 

Department of Mathematics, National Central University, Chung-Li 32001

Received  September 2014 Revised  July 2015 Published  September 2015

We are interested in finding entire solutions of a bistable periodic lattice dynamical system. By constructing appropriate super- and subsolutions of the system, we establish two different types of merging-front entire solutions. The first type can be characterized by two monostable fronts merging and converging to a single bistable front; while the second type is a solution which behaves as a monostable front merging with a bistable front and one chases another from the same side of $x$-axis. For this discrete and spatially periodic system, we have to emphasize that there has no symmetry between the increasing and decreasing pulsating traveling fronts, which increases the difficulty of construction of the super- and subsolutions.
Citation: Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329
References:
[1]

X. Chen, J.-S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics,, Arch. Rational Mech. Anal., 189 (2008), 189.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[2]

S.-N. Chow, J. Mallet-Paret and W. Shen, Travelling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[3]

P.-C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics 28, (1979).   Google Scholar

[4]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations,, Math. Ann., 335 (2006), 489.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations,, Discrete Contin. Dyn. Syst., 12 (2005), 193.   Google Scholar

[6]

J.-S. Guo and C. H. Wu, Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system,, J. Differential Equations, 246 (2009), 3818.  doi: 10.1016/j.jde.2009.03.010.  Google Scholar

[7]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation,, J. Math. Anal. Appl., 347 (2008), 450.  doi: 10.1016/j.jmaa.2008.03.076.  Google Scholar

[8]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation,, Comm. Pure Appl. Math., 52 (1999), 1255.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.  Google Scholar

[9]

W.-T. Li, N.-W. Liu and Z.-C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders,, J. Math. Pures Appl., 90 (2008), 492.  doi: 10.1016/j.matpur.2008.07.002.  Google Scholar

[10]

W.-T. Li, Z.-C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity,, J. Differential Equations, 245 (2008), 102.  doi: 10.1016/j.jde.2008.03.023.  Google Scholar

[11]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[12]

N.-W. Liu, W.-T. Li and Z.-C. Wang, Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders,, J. Differential Equations, 246 (2009), 4249.  doi: 10.1016/j.jde.2008.12.005.  Google Scholar

[13]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[14]

S. Ma and X. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations,, Discrete Contin. Dyn. Syst., 21 (2008), 259.  doi: 10.3934/dcds.2008.21.259.  Google Scholar

[15]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations,, J. Dynam. Differential Equations, 18 (2006), 841.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[16]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.  doi: 10.1137/080723715.  Google Scholar

[17]

N. Shigesada and K. Kawasaki, Biological invasions: theory and practice,, Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[18]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[19]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity,, Trans. Amer. Math. Soc., 361 (2009), 2047.  doi: 10.1090/S0002-9947-08-04694-1.  Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in delayed lattice differential equations with monostable nonlinearity,, SIAM J. Math. Anal., 40 (2009), 2392.  doi: 10.1137/080727312.  Google Scholar

[21]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in lattice delayed differential equations with nonlocal interaction: Bistable case,, Math. Model. Nat. Phenom., 8 (2013), 78.  doi: 10.1051/mmnp/20138307.  Google Scholar

[22]

M.-X. Wang and G.-Y. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay,, Nonlinearity, 23 (2010), 1609.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[23]

S.-L. Wu, Z.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems,, J. Differential Equations, 255 (2013), 3505.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

[24]

S.-L. Wu, Y.-J. Sun and S.-Y. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[25]

S.-L. Wu and H. Wang, Front-like entire solutions for monostable reaction-diffusion systems,, J. Dynam. Differential Equations, 25 (2013), 505.  doi: 10.1007/s10884-013-9293-6.  Google Scholar

show all references

References:
[1]

X. Chen, J.-S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics,, Arch. Rational Mech. Anal., 189 (2008), 189.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[2]

S.-N. Chow, J. Mallet-Paret and W. Shen, Travelling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[3]

P.-C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics 28, (1979).   Google Scholar

[4]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations,, Math. Ann., 335 (2006), 489.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations,, Discrete Contin. Dyn. Syst., 12 (2005), 193.   Google Scholar

[6]

J.-S. Guo and C. H. Wu, Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system,, J. Differential Equations, 246 (2009), 3818.  doi: 10.1016/j.jde.2009.03.010.  Google Scholar

[7]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation,, J. Math. Anal. Appl., 347 (2008), 450.  doi: 10.1016/j.jmaa.2008.03.076.  Google Scholar

[8]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation,, Comm. Pure Appl. Math., 52 (1999), 1255.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.  Google Scholar

[9]

W.-T. Li, N.-W. Liu and Z.-C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders,, J. Math. Pures Appl., 90 (2008), 492.  doi: 10.1016/j.matpur.2008.07.002.  Google Scholar

[10]

W.-T. Li, Z.-C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity,, J. Differential Equations, 245 (2008), 102.  doi: 10.1016/j.jde.2008.03.023.  Google Scholar

[11]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[12]

N.-W. Liu, W.-T. Li and Z.-C. Wang, Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders,, J. Differential Equations, 246 (2009), 4249.  doi: 10.1016/j.jde.2008.12.005.  Google Scholar

[13]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[14]

S. Ma and X. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations,, Discrete Contin. Dyn. Syst., 21 (2008), 259.  doi: 10.3934/dcds.2008.21.259.  Google Scholar

[15]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations,, J. Dynam. Differential Equations, 18 (2006), 841.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[16]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.  doi: 10.1137/080723715.  Google Scholar

[17]

N. Shigesada and K. Kawasaki, Biological invasions: theory and practice,, Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[18]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[19]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity,, Trans. Amer. Math. Soc., 361 (2009), 2047.  doi: 10.1090/S0002-9947-08-04694-1.  Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in delayed lattice differential equations with monostable nonlinearity,, SIAM J. Math. Anal., 40 (2009), 2392.  doi: 10.1137/080727312.  Google Scholar

[21]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in lattice delayed differential equations with nonlocal interaction: Bistable case,, Math. Model. Nat. Phenom., 8 (2013), 78.  doi: 10.1051/mmnp/20138307.  Google Scholar

[22]

M.-X. Wang and G.-Y. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay,, Nonlinearity, 23 (2010), 1609.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[23]

S.-L. Wu, Z.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems,, J. Differential Equations, 255 (2013), 3505.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

[24]

S.-L. Wu, Y.-J. Sun and S.-Y. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[25]

S.-L. Wu and H. Wang, Front-like entire solutions for monostable reaction-diffusion systems,, J. Dynam. Differential Equations, 25 (2013), 505.  doi: 10.1007/s10884-013-9293-6.  Google Scholar

[1]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[2]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[3]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[4]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[5]

Léo Girardin. Competition in periodic media:Ⅰ-Existence of pulsating fronts. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1341-1360. doi: 10.3934/dcdsb.2017065

[6]

Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038

[7]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[8]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[9]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[10]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[11]

Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure & Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001

[12]

Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989

[13]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[14]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[15]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[18]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[19]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[20]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]