April  2016, 36(4): 2347-2364. doi: 10.3934/dcds.2016.36.2347

On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation

1. 

Department of Mathematics, Nanjing Forestry University, Nanjing 210036, China

2. 

Department of Mathematics, Southwest University, Chongqing 400715, China

Received  March 2015 Revised  April 2015 Published  September 2015

We derive conditions on the initial data, including cases where the initial momentum density is not of one sign, that produce blow-up of the induced solution to the periodic modified Camassa-Holm equation with cubic nonlinearity. The blow-up conditions and the blow-up rate are formulated in terms of the initial momentum density and the average initial energy.
Citation: Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[4]

C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dynam. Differential Equations, 16 (2004), 167.  doi: 10.1023/B:JODY.0000041284.26400.d0.  Google Scholar

[5]

K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves I,, Physica D, 162 (2002), 9.  doi: 10.1016/S0167-2789(01)00364-5.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[8]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26 (1998), 303.   Google Scholar

[11]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[13]

A. Constantin and H. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[17]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[18]

H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[19]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and perturbation theory (ed. A. Degasperis & G. Gaeta), (1999), 23.   Google Scholar

[20]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[21]

A. S. Fokas, On a class of physically important integrable equation,, Physica D, 87 (1995), 145.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[22]

Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity,, J. Differential Equations, 255 (2013), 1905.  doi: 10.1016/j.jde.2013.05.024.  Google Scholar

[23]

B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation,, Physica D, 95 (1996), 229.  doi: 10.1016/0167-2789(96)00048-6.  Google Scholar

[24]

B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[25]

G. L. Gui, Y. Liu , P. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, Comm. Math. Phy., 319 (2013), 731.  doi: 10.1007/s00220-012-1566-0.  Google Scholar

[26]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Disc. Cont. Dyn. Syst. A., 14 (2006), 505.   Google Scholar

[27]

D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Analysis, 70 (2009), 1565.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[28]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.  doi: 10.1063/1.532690.  Google Scholar

[29]

J. Lenells, A variational approach to the stability of periodic peakons,, J. Nonl. Math. Phys., 11 (2004), 151.  doi: 10.2991/jnmp.2004.11.2.2.  Google Scholar

[30]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[31]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[32]

G. Misołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[33]

V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[34]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E, 53 (1996), 1900.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[35]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons,, J. Math. Phys., 47 (2006).  doi: 10.1063/1.2365758.  Google Scholar

[37]

C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic onlinearity,, Comm. Math. Phys., 322 (2013), 967.  doi: 10.1007/s00220-013-1749-3.  Google Scholar

[38]

J. F. Toland, Stokes waves, Topol,, Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[39]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A, 12 (2005), 375.   Google Scholar

[40]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[41]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2000), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[4]

C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dynam. Differential Equations, 16 (2004), 167.  doi: 10.1023/B:JODY.0000041284.26400.d0.  Google Scholar

[5]

K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves I,, Physica D, 162 (2002), 9.  doi: 10.1016/S0167-2789(01)00364-5.  Google Scholar

[6]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[7]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[8]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26 (1998), 303.   Google Scholar

[11]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[13]

A. Constantin and H. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[17]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[18]

H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[19]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and perturbation theory (ed. A. Degasperis & G. Gaeta), (1999), 23.   Google Scholar

[20]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[21]

A. S. Fokas, On a class of physically important integrable equation,, Physica D, 87 (1995), 145.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[22]

Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity,, J. Differential Equations, 255 (2013), 1905.  doi: 10.1016/j.jde.2013.05.024.  Google Scholar

[23]

B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation,, Physica D, 95 (1996), 229.  doi: 10.1016/0167-2789(96)00048-6.  Google Scholar

[24]

B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[25]

G. L. Gui, Y. Liu , P. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, Comm. Math. Phy., 319 (2013), 731.  doi: 10.1007/s00220-012-1566-0.  Google Scholar

[26]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Disc. Cont. Dyn. Syst. A., 14 (2006), 505.   Google Scholar

[27]

D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Analysis, 70 (2009), 1565.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[28]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.  doi: 10.1063/1.532690.  Google Scholar

[29]

J. Lenells, A variational approach to the stability of periodic peakons,, J. Nonl. Math. Phys., 11 (2004), 151.  doi: 10.2991/jnmp.2004.11.2.2.  Google Scholar

[30]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[31]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[32]

G. Misołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[33]

V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[34]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E, 53 (1996), 1900.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[35]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons,, J. Math. Phys., 47 (2006).  doi: 10.1063/1.2365758.  Google Scholar

[37]

C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic onlinearity,, Comm. Math. Phys., 322 (2013), 967.  doi: 10.1007/s00220-013-1749-3.  Google Scholar

[38]

J. F. Toland, Stokes waves, Topol,, Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[39]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A, 12 (2005), 375.   Google Scholar

[40]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[41]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2000), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

[1]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[2]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[8]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[11]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[12]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[13]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[14]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[19]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[20]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]