April  2016, 36(4): 2365-2366. doi: 10.3934/dcds.2016.36.2365

Erratum and addendum to: The general recombination equation in continuous time and its solution

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  August 2015 Published  September 2015

N/A
Citation: Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365
References:
[1]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[2]

E. Baake, M. Baake and M. Salamat, The general recombionation equation in continuous time and its solution,, Discr. Cont. Dynam. Syst., 36 (2016), 63. doi: 10.3934/dcds.2016.36.63.

[3]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().

show all references

References:
[1]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[2]

E. Baake, M. Baake and M. Salamat, The general recombionation equation in continuous time and its solution,, Discr. Cont. Dynam. Syst., 36 (2016), 63. doi: 10.3934/dcds.2016.36.63.

[3]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().

[1]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[2]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[3]

Zhenguo Bai, Yicang Zhou. Addendum. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 915-916. doi: 10.3934/dcdsb.2011.15.915

[4]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[5]

Freddy Dumortier, Robert Roussarie. Erratum. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 816-816. doi: 10.3934/dcds.2008.22.816

[6]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Erratum. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 219-220. doi: 10.3934/dcds.2007.18.219

[7]

François Genoud. Erratum. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1119-1120. doi: 10.3934/dcds.2010.26.1119

[8]

Bernhard Kawohl. Erratum. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 690-690. doi: 10.3934/dcds.2007.17.690

[9]

Inwon C. Kim. Erratum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 375-377. doi: 10.3934/dcds.2011.30.375

[10]

John B. Little. Erratum. Advances in Mathematics of Communications, 2008, 2 (3) : 344-345. doi: 10.3934/amc.2008.2.344

[11]

Antoine Gloria Cermics. Erratum. Networks & Heterogeneous Media, 2006, 1 (3) : 513-514. doi: 10.3934/nhm.2006.1.513

[12]

Urszula Ledzewicz, Andrzej Swierniak. ERRATUM. Mathematical Biosciences & Engineering, 2005, 2 (3) : 671-671. doi: 10.3934/mbe.2005.2.671

[13]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Erratum. Advances in Mathematics of Communications, 2010, 4 (4) : 597-597. doi: 10.3934/amc.2010.4.597

[14]

David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Erratum. Advances in Mathematics of Communications, 2009, 3 (4) : 429-430. doi: 10.3934/amc.2009.3.429

[15]

Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088

[16]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[17]

Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075

[18]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[19]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[20]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]