May  2016, 36(5): 2377-2403. doi: 10.3934/dcds.2016.36.2377

A volume-based approach to the multiplicative ergodic theorem on Banach spaces

1. 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185, United States

Received  July 2014 Revised  September 2015 Published  October 2015

A volume growth-based proof of the Multiplicative Ergodic Theorem for Banach spaces is presented, following the approach of Ruelle for cocycles acting on a Hilbert space. As a consequence, we obtain a volume growth interpretation for the Lyapunov exponents of a Banach space cocycle.
Citation: Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377
References:
[1]

R. R. Akhmerov, M. Kamenskii, A. Potapov, A. Rodkina and B. Sadovskii, Measures of noncompactness and condensing operators,, Operator Theory, 55 (1992), 1.  doi: 10.1007/978-3-0348-5727-7.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

E. Berkson, Some metrics on the subspaces of a banach space,, Pacific J. Math, 13 (1963), 7.  doi: 10.2140/pjm.1963.13.7.  Google Scholar

[4]

B. Bollobas, Linear Analysis, an Introductory Course,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781139168472.  Google Scholar

[5]

H. Busemann, Intrinsic area,, Annals of Mathematics, 48 (1947), 234.  doi: 10.2307/1969168.  Google Scholar

[6]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977).   Google Scholar

[7]

M. M. Day, Normed Linear Spaces,, Third edition, (1973).   Google Scholar

[8]

G. B. Folland, A Course in Abstract Harmonic Analysis,, Studies in Advanced Mathematics, (1995).   Google Scholar

[9]

G. Froyland, S. Lloyd and A. Quas, A semi-invertible oseledets theorem with applications to transfer operator cocycles,, Discrete and Continuous Dynamical Systems, 33 (2013), 3835.  doi: 10.3934/dcds.2013.33.3835.  Google Scholar

[10]

C. González-Tokman and A. Quas, A concise proof of the multiplicative ergodic theorem on banach spaces,, Journal of Modern Dynamics, 9 (2015), 237.  doi: 10.3934/jmd.2015.9.237.  Google Scholar

[11]

C. González-Tokman and A. Quas, A semi-invertible operator oseledets theorem,, Ergodic Theory and Dynamical Systems, 34 (2014), 1230.  doi: 10.1017/etds.2012.189.  Google Scholar

[12]

E. Hille and R. S. Phillips, Functional Analysis and Semi-groups,, American Mathematical Soc., (1957).   Google Scholar

[13]

T. Kato, Perturbation Theory for Linear Operators,, Springer, (1995).   Google Scholar

[14]

H. Kober, A theorem on banach spaces,, Compositio Mathematica, 7 (1940), 135.   Google Scholar

[15]

U. Krengel and A. Brunel, Ergodic Theorems,, Walter de Gruyter, (1985).  doi: 10.1515/9783110844641.  Google Scholar

[16]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[17]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in Geometric Dynamics, (1007), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[18]

V. I. Oseledets, A multiplicative ergodic theorem. characteristic lyapunov exponents of dynamical systems,, Trudy Moskovskogo Matematicheskogo Obshchestva, 19 (1968), 179.   Google Scholar

[19]

A. Pietsch, Eigenvalues and S-Numbers,, Cambridge University Press Cambridge, (1987).   Google Scholar

[20]

M. S. Raghunathan, A proof of oseledec's multiplicative ergodic theorem,, Israel Journal of Mathematics, 32 (1979), 356.  doi: 10.1007/BF02760464.  Google Scholar

[21]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 50 (1979), 27.   Google Scholar

[22]

D. Ruelle, Characteristic exponents and invariant manifolds in hilbert space,, Annals of Mathematics, 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[23]

H. Rund, The Differential Geometry of Finsler Spaces,, Springer, (1959).   Google Scholar

[24]

M. Schechter, Principles of Functional Analysis,, American Mathematical Soc., (1973).   Google Scholar

[25]

B.-M. D. T. Son, Lyapunov Exponents for Random Dynamical Systems,, PhD thesis, (2009).   Google Scholar

[26]

R. Temam, Infinite Dimensonal Dynamical Systems in Mechanics and Physics,, Second edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[27]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts exposants de Lyapounov. Entropie. Dimension,, Annales de l'institut Henri Poincaré (C) Analyse Non Linéaire, 4 (1987), 49.   Google Scholar

[28]

P. Walters, A dynamical proof of the multiplicative ergodic theorem,, Transactions of the American Mathematical Society, 335 (1993), 245.  doi: 10.1090/S0002-9947-1993-1073779-7.  Google Scholar

[29]

P. Wojtaszczyk, Banach Spaces for Analysts,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511608735.  Google Scholar

show all references

References:
[1]

R. R. Akhmerov, M. Kamenskii, A. Potapov, A. Rodkina and B. Sadovskii, Measures of noncompactness and condensing operators,, Operator Theory, 55 (1992), 1.  doi: 10.1007/978-3-0348-5727-7.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

E. Berkson, Some metrics on the subspaces of a banach space,, Pacific J. Math, 13 (1963), 7.  doi: 10.2140/pjm.1963.13.7.  Google Scholar

[4]

B. Bollobas, Linear Analysis, an Introductory Course,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781139168472.  Google Scholar

[5]

H. Busemann, Intrinsic area,, Annals of Mathematics, 48 (1947), 234.  doi: 10.2307/1969168.  Google Scholar

[6]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977).   Google Scholar

[7]

M. M. Day, Normed Linear Spaces,, Third edition, (1973).   Google Scholar

[8]

G. B. Folland, A Course in Abstract Harmonic Analysis,, Studies in Advanced Mathematics, (1995).   Google Scholar

[9]

G. Froyland, S. Lloyd and A. Quas, A semi-invertible oseledets theorem with applications to transfer operator cocycles,, Discrete and Continuous Dynamical Systems, 33 (2013), 3835.  doi: 10.3934/dcds.2013.33.3835.  Google Scholar

[10]

C. González-Tokman and A. Quas, A concise proof of the multiplicative ergodic theorem on banach spaces,, Journal of Modern Dynamics, 9 (2015), 237.  doi: 10.3934/jmd.2015.9.237.  Google Scholar

[11]

C. González-Tokman and A. Quas, A semi-invertible operator oseledets theorem,, Ergodic Theory and Dynamical Systems, 34 (2014), 1230.  doi: 10.1017/etds.2012.189.  Google Scholar

[12]

E. Hille and R. S. Phillips, Functional Analysis and Semi-groups,, American Mathematical Soc., (1957).   Google Scholar

[13]

T. Kato, Perturbation Theory for Linear Operators,, Springer, (1995).   Google Scholar

[14]

H. Kober, A theorem on banach spaces,, Compositio Mathematica, 7 (1940), 135.   Google Scholar

[15]

U. Krengel and A. Brunel, Ergodic Theorems,, Walter de Gruyter, (1985).  doi: 10.1515/9783110844641.  Google Scholar

[16]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[17]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in Geometric Dynamics, (1007), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[18]

V. I. Oseledets, A multiplicative ergodic theorem. characteristic lyapunov exponents of dynamical systems,, Trudy Moskovskogo Matematicheskogo Obshchestva, 19 (1968), 179.   Google Scholar

[19]

A. Pietsch, Eigenvalues and S-Numbers,, Cambridge University Press Cambridge, (1987).   Google Scholar

[20]

M. S. Raghunathan, A proof of oseledec's multiplicative ergodic theorem,, Israel Journal of Mathematics, 32 (1979), 356.  doi: 10.1007/BF02760464.  Google Scholar

[21]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 50 (1979), 27.   Google Scholar

[22]

D. Ruelle, Characteristic exponents and invariant manifolds in hilbert space,, Annals of Mathematics, 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[23]

H. Rund, The Differential Geometry of Finsler Spaces,, Springer, (1959).   Google Scholar

[24]

M. Schechter, Principles of Functional Analysis,, American Mathematical Soc., (1973).   Google Scholar

[25]

B.-M. D. T. Son, Lyapunov Exponents for Random Dynamical Systems,, PhD thesis, (2009).   Google Scholar

[26]

R. Temam, Infinite Dimensonal Dynamical Systems in Mechanics and Physics,, Second edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[27]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts exposants de Lyapounov. Entropie. Dimension,, Annales de l'institut Henri Poincaré (C) Analyse Non Linéaire, 4 (1987), 49.   Google Scholar

[28]

P. Walters, A dynamical proof of the multiplicative ergodic theorem,, Transactions of the American Mathematical Society, 335 (1993), 245.  doi: 10.1090/S0002-9947-1993-1073779-7.  Google Scholar

[29]

P. Wojtaszczyk, Banach Spaces for Analysts,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511608735.  Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]