May  2016, 36(5): 2419-2447. doi: 10.3934/dcds.2016.36.2419

Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient

1. 

Departamento de Computação e Matemática, Universidade de São Paulo (USP), FFCLRP, Av. dos Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil

2. 

Department of Mathematics, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil

3. 

Department of Mathematics, Federal University of Santa Catarina, Campus Trindade, Florianopolis, SC 88040-900, Brazil

Received  April 2015 Revised  September 2015 Published  October 2015

In this work we study decay rates for a hyperbolic plate equation under effects of an intermediate damping term represented by the action of a fractional Laplacian operator and a time-dependent coefficient. We obtain decay rates with very general conditions on the time-dependent coefficient (Theorem 2.1, Section 2), for the power fractional exponent of the Laplace operator $(-\Delta)^\theta$, in the damping term, $\theta \in [0,1]$. For the special time-dependent coefficient $b(t)=\mu (1+t)^{\alpha}$, $\alpha \in (0,1]$, we get optimal decay rates (Theorem 3.1, Section 3).
Citation: Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419
References:
[1]

D. Andrade, M. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms,, Math. Methods Appl. Sci., 35 (2012), 417. doi: 10.1002/mma.1552. Google Scholar

[2]

M. A. Astaburuaga, C. Fernandez and G. Perla Menzala, Energy decay rates and the dynamical von Kármán equations,, Appl. Math. Lett., 7 (1994), 7. doi: 10.1016/0893-9659(94)90021-3. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of the American Mathematical Society, 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[4]

P. G. Ciarlet, A justification of the von Kármán equations,, Arch. Rational Mech. Anal., 73 (1980), 349. doi: 10.1007/BF00247674. Google Scholar

[5]

R. Coimbra Charão, C. R. da Luz and R. Ikehata, Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space,, J. Math. Anal. Appl., 408 (2013), 247. doi: 10.1016/j.jmaa.2013.06.016. Google Scholar

[6]

R. Coimbra Charão, C. R. da Luz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, J. Hyperbolic Differ. Equ., 10 (2013), 563. doi: 10.1142/S0219891613500203. Google Scholar

[7]

R. Coimbra Charão and R. Ikehata, Energy decay rates of elastic waves in unbounded domain with potential type of damping,, J. Math. Anal. Appl., 380 (2011), 46. doi: 10.1016/j.jmaa.2011.02.075. Google Scholar

[8]

C. R. da Luz and R. Coimbra Charão, Asymptotic properties for a semilinear plate equation in unbounded domains,, J. Hyperbolic Differ. Equ., 6 (2009), 269. doi: 10.1142/S0219891609001824. Google Scholar

[9]

C. R. da Luz, R. Ikehata and R. Coimbra Charão, Asymptotic behavior for abstract evolution differential equations of second order,, J. Differential Equations, 259 (2015), 5017. doi: 10.1016/j.jde.2015.06.012. Google Scholar

[10]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, Math. Methods Appl. Sci., 38 (2015), 1032. doi: 10.1002/mma.3126. Google Scholar

[11]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. Differential Equations, 256 (2014), 2307. doi: 10.1016/j.jde.2014.01.002. Google Scholar

[12]

M. D'Abbicco and M. R. Ebert, A classification of structural dissipations for evolution operators,, Math. Methods in the Appl. Sci., (2015). doi: 10.1002/mma.3713. Google Scholar

[13]

M. D'Abbicco and E. Jannelli, A damping term for higher-order hyperbolic equations,, Ann. Mat. Pura ed Appl., (2015), 10231. doi: 10.1007/s10231-015-0477-z. Google Scholar

[14]

M. D'Abbicco, S. Lucente and M. Reissig, Semi-linear wave equations with effective damping,, Chin. Ann. Math. Ser. B, 34 (2013), 345. doi: 10.1007/s11401-013-0773-0. Google Scholar

[15]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet-Neumann boundary conditions,, J. Differential Equations, 259 (2015), 1323. doi: 10.1016/j.jde.2015.02.043. Google Scholar

[16]

D. Fang, X. Lu and M. Reissig, High-order energy decay for structural damped systems in the electromagnetical field,, Chin. Ann. Math. Ser. B, 31 (2010), 237. doi: 10.1007/s11401-008-0185-8. Google Scholar

[17]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Kármán plates with geometrically localized dissipation and critical nonlinearity,, Nonlinear Analysis, 91 (2013), 72. doi: 10.1016/j.na.2013.06.008. Google Scholar

[18]

R. Ikehata and Y. Inoue, Total energy decay for semilinear wave equations with a critical potential type of damping,, Nonlinear Anal., 69 (2008), 1396. doi: 10.1016/j.na.2007.06.039. Google Scholar

[19]

R. Ikehata and M. Soga, Asymptotic profiles for a strongly damped plate equation with lower order perturbation,, Commun. Pure Appl. Anal., 14 (2015), 1759. doi: 10.3934/cpaa.2015.14.1759. Google Scholar

[20]

R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential,, J. Math. Soc. Japan, 65 (2013), 183. doi: 10.2969/jmsj/06510183. Google Scholar

[21]

M. Kainane and M. Reissig, Qualitative properties of solution to structurally damped $\sigma-$evolution models with time decreasing coefficient in the dissipation,, in Complex Analysis and Dynamical Systems VI, (2015). Google Scholar

[22]

M. Kainane and M. Reissig, Qualitative properties of solution to structurally damped $\sigma-$evolution models with time increasing coefficient in the dissipation,, Adv. Differential Equations, 20 (2015), 433. Google Scholar

[23]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, Studia Math., 143 (2000), 175. Google Scholar

[24]

H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear dynamical elasticity - full von Kármán systems,, Progress Nonlin. Diff. Eqs. Appl., 50 (2002), 197. Google Scholar

[25]

I. Lasiecka, Uniform stability of a full von Kármán system with nonlinear boundary feedbach},, SIAM J. Control Optim., 36 (1998), 1376. doi: 10.1137/S0363012996301907. Google Scholar

[26]

I. Lasiecka and A. Benabdallah, Exponential decay rates for a full von Kármán thermoelasticity system with nonlinear thermal coupling,, ESAIM: Control, 8 (2000), 13. doi: 10.1051/proc:2000002. Google Scholar

[27]

J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete Contin. Dyn. Syst., 32 (2012), 4307. doi: 10.3934/dcds.2012.32.4307. Google Scholar

[28]

J. R. Luyo Sánchez, O Sistema Dinâmico de Von Kármán em Domínios Não Limitados é Globalmente Bem Posto no Sentido de Hadamard: Análise do seu Limite Singular (Portuguese),, Ph.D thesis, (2003). Google Scholar

[29]

Q. Ma, Y. Yang and X. Zhang, Existence of exponential attractors for the plate equations with strong damping,, Electron. J. Differential Equations, (2013), 1. Google Scholar

[30]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIM Control Optim. Calc. Var., 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[31]

S. Matthes and M. Reissig, Qualitative properties of structurally damped wave models,, Eurasian Math. J., 4 (2013), 84. Google Scholar

[32]

G. P. Menzala and E. Zuazua, Timoshenko's plate equations as a singular limit of the dinamical von Kármán system,, J. Math. Pures Appl., 79 (2000), 73. doi: 10.1016/S0021-7824(00)00149-5. Google Scholar

[33]

J. P. Puel and M. Tucsnak, Global existence for full von Kármán system,, Appl. Math. Optim., 34 (1996), 139. doi: 10.1007/BF01182621. Google Scholar

[34]

R. Schnaubelt and M. Veraar, Structurally damped plate and wave equations with random point force in arbitrary space dimensions,, Differential Integral Equations, 23 (2010), 957. Google Scholar

[35]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation,, J. Hyperbolic Differ. Equ., 7 (2010), 471. doi: 10.1142/S0219891610002207. Google Scholar

[36]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1979). Google Scholar

[37]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Ph.D thesis, (2014). Google Scholar

[38]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping,, in Fourier Analysis, (2013), 375. doi: 10.1007/978-3-319-02550-6_19. Google Scholar

[39]

Y.-Z. Wang, Asymptotic behavior of solutions to the damped nonlinear hyperbolic equation,, J. Appl. Math., (2013). Google Scholar

[40]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations, 232 (2007), 74. doi: 10.1016/j.jde.2006.06.004. Google Scholar

[41]

L. Xu and Q. Ma, Existence of random attractors for the floating beam equation with strong damping and white noise,, Bound. Value Probl., 2015 (2015), 13661. doi: 10.1186/s13661-015-0391-8. Google Scholar

[42]

K. Yagdjian, The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics. Micro-Local Approach,, Mathematical Topics, (1997). Google Scholar

show all references

References:
[1]

D. Andrade, M. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms,, Math. Methods Appl. Sci., 35 (2012), 417. doi: 10.1002/mma.1552. Google Scholar

[2]

M. A. Astaburuaga, C. Fernandez and G. Perla Menzala, Energy decay rates and the dynamical von Kármán equations,, Appl. Math. Lett., 7 (1994), 7. doi: 10.1016/0893-9659(94)90021-3. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of the American Mathematical Society, 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[4]

P. G. Ciarlet, A justification of the von Kármán equations,, Arch. Rational Mech. Anal., 73 (1980), 349. doi: 10.1007/BF00247674. Google Scholar

[5]

R. Coimbra Charão, C. R. da Luz and R. Ikehata, Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space,, J. Math. Anal. Appl., 408 (2013), 247. doi: 10.1016/j.jmaa.2013.06.016. Google Scholar

[6]

R. Coimbra Charão, C. R. da Luz and R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping,, J. Hyperbolic Differ. Equ., 10 (2013), 563. doi: 10.1142/S0219891613500203. Google Scholar

[7]

R. Coimbra Charão and R. Ikehata, Energy decay rates of elastic waves in unbounded domain with potential type of damping,, J. Math. Anal. Appl., 380 (2011), 46. doi: 10.1016/j.jmaa.2011.02.075. Google Scholar

[8]

C. R. da Luz and R. Coimbra Charão, Asymptotic properties for a semilinear plate equation in unbounded domains,, J. Hyperbolic Differ. Equ., 6 (2009), 269. doi: 10.1142/S0219891609001824. Google Scholar

[9]

C. R. da Luz, R. Ikehata and R. Coimbra Charão, Asymptotic behavior for abstract evolution differential equations of second order,, J. Differential Equations, 259 (2015), 5017. doi: 10.1016/j.jde.2015.06.012. Google Scholar

[10]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, Math. Methods Appl. Sci., 38 (2015), 1032. doi: 10.1002/mma.3126. Google Scholar

[11]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. Differential Equations, 256 (2014), 2307. doi: 10.1016/j.jde.2014.01.002. Google Scholar

[12]

M. D'Abbicco and M. R. Ebert, A classification of structural dissipations for evolution operators,, Math. Methods in the Appl. Sci., (2015). doi: 10.1002/mma.3713. Google Scholar

[13]

M. D'Abbicco and E. Jannelli, A damping term for higher-order hyperbolic equations,, Ann. Mat. Pura ed Appl., (2015), 10231. doi: 10.1007/s10231-015-0477-z. Google Scholar

[14]

M. D'Abbicco, S. Lucente and M. Reissig, Semi-linear wave equations with effective damping,, Chin. Ann. Math. Ser. B, 34 (2013), 345. doi: 10.1007/s11401-013-0773-0. Google Scholar

[15]

R. Denk and R. Schnaubelt, A structurally damped plate equation with Dirichlet-Neumann boundary conditions,, J. Differential Equations, 259 (2015), 1323. doi: 10.1016/j.jde.2015.02.043. Google Scholar

[16]

D. Fang, X. Lu and M. Reissig, High-order energy decay for structural damped systems in the electromagnetical field,, Chin. Ann. Math. Ser. B, 31 (2010), 237. doi: 10.1007/s11401-008-0185-8. Google Scholar

[17]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Kármán plates with geometrically localized dissipation and critical nonlinearity,, Nonlinear Analysis, 91 (2013), 72. doi: 10.1016/j.na.2013.06.008. Google Scholar

[18]

R. Ikehata and Y. Inoue, Total energy decay for semilinear wave equations with a critical potential type of damping,, Nonlinear Anal., 69 (2008), 1396. doi: 10.1016/j.na.2007.06.039. Google Scholar

[19]

R. Ikehata and M. Soga, Asymptotic profiles for a strongly damped plate equation with lower order perturbation,, Commun. Pure Appl. Anal., 14 (2015), 1759. doi: 10.3934/cpaa.2015.14.1759. Google Scholar

[20]

R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential,, J. Math. Soc. Japan, 65 (2013), 183. doi: 10.2969/jmsj/06510183. Google Scholar

[21]

M. Kainane and M. Reissig, Qualitative properties of solution to structurally damped $\sigma-$evolution models with time decreasing coefficient in the dissipation,, in Complex Analysis and Dynamical Systems VI, (2015). Google Scholar

[22]

M. Kainane and M. Reissig, Qualitative properties of solution to structurally damped $\sigma-$evolution models with time increasing coefficient in the dissipation,, Adv. Differential Equations, 20 (2015), 433. Google Scholar

[23]

G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations,, Studia Math., 143 (2000), 175. Google Scholar

[24]

H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear dynamical elasticity - full von Kármán systems,, Progress Nonlin. Diff. Eqs. Appl., 50 (2002), 197. Google Scholar

[25]

I. Lasiecka, Uniform stability of a full von Kármán system with nonlinear boundary feedbach},, SIAM J. Control Optim., 36 (1998), 1376. doi: 10.1137/S0363012996301907. Google Scholar

[26]

I. Lasiecka and A. Benabdallah, Exponential decay rates for a full von Kármán thermoelasticity system with nonlinear thermal coupling,, ESAIM: Control, 8 (2000), 13. doi: 10.1051/proc:2000002. Google Scholar

[27]

J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete Contin. Dyn. Syst., 32 (2012), 4307. doi: 10.3934/dcds.2012.32.4307. Google Scholar

[28]

J. R. Luyo Sánchez, O Sistema Dinâmico de Von Kármán em Domínios Não Limitados é Globalmente Bem Posto no Sentido de Hadamard: Análise do seu Limite Singular (Portuguese),, Ph.D thesis, (2003). Google Scholar

[29]

Q. Ma, Y. Yang and X. Zhang, Existence of exponential attractors for the plate equations with strong damping,, Electron. J. Differential Equations, (2013), 1. Google Scholar

[30]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIM Control Optim. Calc. Var., 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[31]

S. Matthes and M. Reissig, Qualitative properties of structurally damped wave models,, Eurasian Math. J., 4 (2013), 84. Google Scholar

[32]

G. P. Menzala and E. Zuazua, Timoshenko's plate equations as a singular limit of the dinamical von Kármán system,, J. Math. Pures Appl., 79 (2000), 73. doi: 10.1016/S0021-7824(00)00149-5. Google Scholar

[33]

J. P. Puel and M. Tucsnak, Global existence for full von Kármán system,, Appl. Math. Optim., 34 (1996), 139. doi: 10.1007/BF01182621. Google Scholar

[34]

R. Schnaubelt and M. Veraar, Structurally damped plate and wave equations with random point force in arbitrary space dimensions,, Differential Integral Equations, 23 (2010), 957. Google Scholar

[35]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation,, J. Hyperbolic Differ. Equ., 7 (2010), 471. doi: 10.1142/S0219891610002207. Google Scholar

[36]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1979). Google Scholar

[37]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Ph.D thesis, (2014). Google Scholar

[38]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping,, in Fourier Analysis, (2013), 375. doi: 10.1007/978-3-319-02550-6_19. Google Scholar

[39]

Y.-Z. Wang, Asymptotic behavior of solutions to the damped nonlinear hyperbolic equation,, J. Appl. Math., (2013). Google Scholar

[40]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations, 232 (2007), 74. doi: 10.1016/j.jde.2006.06.004. Google Scholar

[41]

L. Xu and Q. Ma, Existence of random attractors for the floating beam equation with strong damping and white noise,, Bound. Value Probl., 2015 (2015), 13661. doi: 10.1186/s13661-015-0391-8. Google Scholar

[42]

K. Yagdjian, The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics. Micro-Local Approach,, Mathematical Topics, (1997). Google Scholar

[1]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[2]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020009

[3]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[4]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[5]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[6]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[7]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[8]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[9]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[10]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[11]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[12]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[13]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[14]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[15]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[16]

Alain Haraux, Mohamed Ali Jendoubi. Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evolution Equations & Control Theory, 2013, 2 (3) : 461-470. doi: 10.3934/eect.2013.2.461

[17]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[18]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[19]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[20]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]