May  2016, 36(5): 2521-2583. doi: 10.3934/dcds.2016.36.2521

Recent progresses in boundary layer theory

1. 

Department of Mathematics, University of Louisville, Louisville, KY 40292, United States

2. 

Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea

3. 

Department of Mathematics and The Institute, for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405

Received  April 2015 Revised  September 2015 Published  October 2015

In this article, we review recent progresses in boundary layer analysis of some singular perturbation problems. Using the techniques of differential geometry, an asymptotic expansion of reaction-diffusion or heat equations in a domain with curved boundary is constructed and validated in some suitable functional spaces. In addition, we investigate the effect of curvature as well as that of an ill-prepared initial data. Concerning convection-diffusion equations, the asymptotic behavior of their solutions is difficult and delicate to analyze because it largely depends on the characteristics of the corresponding limit problems, which are first order hyperbolic differential equations. Thus, the boundary layer analysis is performed on relatively simpler domains, typically intervals, rectangles, or circles. We consider also the interior transition layers at the turning point characteristics in an interval domain and classical (ordinary), characteristic (parabolic) and corner (elliptic) boundary layers in a rectangular domain using the technique of correctors and the tools of functional analysis. The validity of our asymptotic expansions is also established in suitable spaces.
Citation: Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521
References:
[1]

M. Amar, A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions,, Discrete Contin. Dynam. Systems, 6 (2000), 537.  doi: 10.3934/dcds.2000.6.537.  Google Scholar

[2]

I. Andronov, D. Bouche and F. Molinet, Asymptotic and Hybrid Methods in Electromagnetics,, IEE Electromagnetic Waves Series, (2005).  doi: 10.1049/PBEW051E.  Google Scholar

[3]

I. Babuška and J. M. Melenk, The partition of unity method,, Internat. J. Numer. Methods Engrg., 40 (1997), 727.  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.  Google Scholar

[4]

I. Babuška, U. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach,, Acta Numer., 12 (2003), 1.  doi: 10.1017/S0962492902000090.  Google Scholar

[5]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport,, Ann. Sci. École Norm. Sup. (4), 3 (1970), 185.   Google Scholar

[6]

G. K. Batchelor, An Introduction to Fluid Dynamics,, paperback edition, (1999).   Google Scholar

[7]

A. E. Berger, H. De Han and R. B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem,, Math. Comp., 42 (1984), 465.  doi: 10.1090/S0025-5718-1984-0736447-2.  Google Scholar

[8]

O. Botella, Numerical Solution of Navier-Stokes Singular Problem by a Chebyshev Projection Method,, Ph.D. Thesis, (2012).   Google Scholar

[9]

Daniel Bouche and Frédéric Molinet, Méthodes Asymptotiques en Électromagnétisme,, With a preface by Robert Dautray, (1994).   Google Scholar

[10]

R. E. Caflisch and M. Sammartino, Existence and singularities for the Prandtl boundary layer equations,, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl, 80 (2000), 733.  doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L.  Google Scholar

[11]

J. R. Cannon, The One-Dimensional Heat Equation,, With a foreword by Felix E. Browder, (1984).  doi: 10.1017/CBO9781139086967.  Google Scholar

[12]

M. Cannone, M. C. Lombardo and M. Sammartino, Well-posedness of Prandtl equations with non-compatible data,, Nonlinearity, 26 (2013), 3077.  doi: 10.1088/0951-7715/26/12/3077.  Google Scholar

[13]

M. Cannone, M. C. Lombardo and M. Sammartino, On the Prandtl boundary layer equations in presence of corner singularities,, Acta Appl. Math., 132 (2014), 139.  doi: 10.1007/s10440-014-9912-1.  Google Scholar

[14]

T. Chacón-Rebollo, M. Gómez-Mármol and S. Rubino, On the existence and asymptotic stability of solutions for unsteady mixing-layer models,, Discrete Contin. Dyn. Syst., 34 (2014), 421.  doi: 10.3934/dcds.2014.34.421.  Google Scholar

[15]

K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications,, Applied Mathematical Sciences, (1984).  doi: 10.1007/978-1-4612-1114-3.  Google Scholar

[16]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations,, Oxford Lecture Series in Mathematics and its Applications, (2006).   Google Scholar

[17]

Q. Chen, Z. Qin and R. Temam, Numerical resolution near $t=0$ of nonlinear evolution equations in the presence of corner singularities in space dimension 1,, Commun. Comput. Phys., 9 (2011), 568.  doi: 10.4208/cicp.110909.160310s.  Google Scholar

[18]

W. Cheng and R. Temam, Numerical approximation of one-dimensional stationary diffusion equations with boundary layers,, Dedicated to Professor Roger Peyret on the occasion of his 65th birthday (Marseille, 31 (2002), 453.  doi: 10.1016/S0045-7930(01)00060-3.  Google Scholar

[19]

W. Cheng, R. Temam and X. Wang, New approximation algorithms for a class of partial differential equations displaying boundary layer behavior,, Cathleen Morawetz: A great mathematician, 7 (2000), 363.   Google Scholar

[20]

P. G. Ciarlet, An introduction to differential geometry with application to elasticity,, With a foreword by Roger Fosdick, 78/79 (2005).  doi: 10.1007/s10659-005-4738-8.  Google Scholar

[21]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[22]

A. J. DeSanti, Nonmonotone interior layer theory for some singularly perturbed quasilinear boundary value problems with turning points,, SIAM J. Math. Anal., 18 (1987), 321.  doi: 10.1137/0518025.  Google Scholar

[23]

A. J. DeSanti, Perturbed quasilinear Dirichlet problems with isolated turning points,, Comm. Partial Differential Equations, 12 (1987), 223.  doi: 10.1080/03605308708820489.  Google Scholar

[24]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl. (9), 78 (1999), 461.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[25]

Yihong Du, Zongming Guo, and Feng Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar

[26]

Zhuoran Du and Baishun Lai, Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds,, Discrete Contin. Dyn. Syst., 33 (2013), 1407.   Google Scholar

[27]

M. Van Dyke, An Album of Fluid Motion,, The Parabolic Press, (1982).   Google Scholar

[28]

E. Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation,, Acta Math. Sin. (Engl. Ser.), 16 (2000), 207.  doi: 10.1007/s101140000034.  Google Scholar

[29]

W. Eckhaus and E. M. de Jager, Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type,, Arch. Rational Mech. Anal., 23 (1966), 26.  doi: 10.1007/BF00281135.  Google Scholar

[30]

W. Eckhaus, Boundary layers in linear elliptic singular perturbation problems,, SIAM Rev., 14 (1972), 225.  doi: 10.1137/1014030.  Google Scholar

[31]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment,, Discrete Contin. Dyn. Syst., 26 (2010), 901.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[32]

N. Flyer and B. Fornberg, Accurate numerical resolution of transients in initial-boundary value problems for the heat equation,, J. Comput. Phys., 184 (2003), 526.  doi: 10.1016/S0021-9991(02)00034-7.  Google Scholar

[33]

N. Flyer and B. Fornberg, On the nature of initial-boundary value solutions for dispersive equations,, SIAM J. Appl. Math., 64 (): 546.  doi: 10.1137/S0036139902415853.  Google Scholar

[34]

S. Garcia, Aperiodic, chaotic lid-driven square cavity flows,, Math. Comput. Simulation, 81 (2011), 1741.  doi: 10.1016/j.matcom.2011.01.011.  Google Scholar

[35]

G.-M. Gie, Singular perturbation problems in a general smooth domain,, Asymptot. Anal., 62 (2009), 227.   Google Scholar

[36]

G.-M. Gie, Asymptotic expansion of the Stokes solutions at small viscosity: The case of non-compatible initial data,, Commun. Math. Sci., 12 (2014), 383.  doi: 10.4310/CMS.2014.v12.n2.a8.  Google Scholar

[37]

G.-M. Gie, M. Hamouda, C.-Y. Jung and T. Roger, Singular Perturbations and Boundary Layers,, in preparation, (2015).   Google Scholar

[38]

G.-M. Gie, M. Hamouda and R. Temam, Asymptotic analysis of the Stokes problem on general bounded domains: The case of a characteristic boundary,, Appl. Anal., 89 (2010), 49.  doi: 10.1080/00036810903437796.  Google Scholar

[39]

G.-M. Gie, M. Hamouda and R. Temam, Boundary layers in smooth curvilinear domains: Parabolic problems,, Discrete Contin. Dyn. Syst., 26 (2010), 1213.  doi: 10.3934/dcds.2010.26.1213.  Google Scholar

[40]

G.-M. Gie, M. Hamouda and R. Temam, Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary,, Netw. Heterog. Media, 7 (2012), 741.  doi: 10.3934/nhm.2012.7.741.  Google Scholar

[41]

G.-M. Gie and C.-Y. Jung, Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition,, Asymptot. Anal., 84 (2013), 17.   Google Scholar

[42]

G.-M. Gie, C.-Y. Jung and R. Temam, Analysis of mixed elliptic and parabolic boundary layers with corners,, Int. J. Differ. Equ., (2013).   Google Scholar

[43]

G.-M. Gie and J. P. Kelliher, Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions,, J. Differential Equations, 253 (2012), 1862.  doi: 10.1016/j.jde.2012.06.008.  Google Scholar

[44]

G.-M. Gie, J. P. Kelliher, M. C. Lopes Filho, A. L. Mazzucato and H. J. Nussenzveig Lopes, Vanishing viscosity limit of some symmetric flows,, preprint., ().   Google Scholar

[45]

J. Grasman, On the Birth of Boundary Layers,, Mathematical Centre Tracts, (1971).   Google Scholar

[46]

H. P. Greenspan, The Theory of Rotating Fluids,, Reprint of the 1968 original, (1968).   Google Scholar

[47]

Y. Guo and T. Nguyen, A note on Prandtl boundary layers,, Comm. Pure Appl. Math., 64 (2011), 1416.  doi: 10.1002/cpa.20377.  Google Scholar

[48]

Y. Guo and T. Nguyen, Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate,, , ().   Google Scholar

[49]

E. Grenier, Boundary layers,, in Handbook of Mathematical Fluid Dynamics. Vol. III, (2004), 245.   Google Scholar

[50]

E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems,, J. Differential Equations, 143 (1998), 110.  doi: 10.1006/jdeq.1997.3364.  Google Scholar

[51]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[52]

P. Grisvard, Singularities in Boundary Value Problems,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1992).   Google Scholar

[53]

O. Guès, G. Métivier, M. Williams and K. Zumbrun, Boundary layer and long time stability for multidimensional viscous shocks,, Discrete Contin. Dyn. Syst., 11 (2004), 131.  doi: 10.3934/dcds.2004.11.131.  Google Scholar

[54]

M. Hamouda, C.-Y. Jung and R. Temam, Boundary layers for the 2D linearized primitive equations,, Commun. Pure Appl. Anal., 8 (2009), 335.  doi: 10.3934/cpaa.2009.8.335.  Google Scholar

[55]

M. Hamouda, C.-Y. Jung and R. Temam, Asymptotic analysis for the 3D primitive equations in a channel,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 401.   Google Scholar

[56]

M. Hamouda and R. Temam, Some singular perturbation problems related to the Navier-Stokes equations,, in Advances in Deterministic and Stochastic Analysis, (2007), 197.  doi: 10.1142/9789812770493_0011.  Google Scholar

[57]

M. Hamouda and R. Temam, Boundary layers for the Navier-Stokes equations. The case of a characteristic boundary,, Georgian Math. J., 15 (2008), 517.   Google Scholar

[58]

M. Hamouda, R. Temam and L. Zhang, Very weak solutions of the Stokes problem in a convex polygon,, to appear, (2015).   Google Scholar

[59]

D. Han, A. L. Mazzucato, D. Niu and X. Wang, Boundary layer for a class of nonlinear pipe flow,, J. Differential Equations, 252 (2012), 6387.  doi: 10.1016/j.jde.2012.02.012.  Google Scholar

[60]

H. Han and R. B. Kellogg, Differentiability properties of solutions of the equation $-\epsilon^2\Delta u+ru=f(x,y)$ in a square,, SIAM J. Math. Anal., 21 (1990), 394.  doi: 10.1137/0521022.  Google Scholar

[61]

H. De Han and R. B. Kellogg, A method of enriched subspaces for the numerical solution of a parabolic singular perturbation problem,, in Computational and Asymptotic Methods for Boundary and Interior Layers (Dublin, (1982), 46.   Google Scholar

[62]

H. D. Han and R. B. Kellogg, The use of enriched subspaces for singular perturbation problems,, in Proceedings of the China-France Symposium on Finite Element Methods (Beijing, (1982), 293.   Google Scholar

[63]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Reprint of the 1952 edition, (1952).   Google Scholar

[64]

P. W. Hemker, A Numerical Study of Stiff Two-Point Boundary Problems,, Mathematisch Centrum, (1977).   Google Scholar

[65]

Y. Hong, C.-Y. Jung and J. Laminie, Singularly perturbed reaction-diffusion equations in a circle with numerical applications,, Int. J. Comput. Math., 90 (2013), 2308.  doi: 10.1080/00207160.2013.772987.  Google Scholar

[66]

Y. Hong, C.-Y. Jung and R. Temam, On the numerical approximations of stiff convection-diffusion equations in a circle,, Numer. Math., 127 (2014), 291.  doi: 10.1007/s00211-013-0585-x.  Google Scholar

[67]

C.-Y. Jung, Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain,, Asymptot. Anal., 57 (2008), 41.   Google Scholar

[68]

C.-Y. Jung and T. B. Nguyen, Semi-analytical numerical methods for convection-dominated problems with turning points,, Int. J. Numer. Anal. Model., 10 (2013), 314.   Google Scholar

[69]

C.-Y. Jung, M. Petcu and R. Temam, Singular perturbation analysis on a homogeneous ocean circulation model,, Anal. Appl. (Singap.), 9 (2011), 275.  doi: 10.1142/S0219530511001832.  Google Scholar

[70]

C.-Y. Jung and R. Temam, Boundary layer theory for convection-diffusion equations in a circle,, Russian Math. Surveys, 69 (2014), 435.   Google Scholar

[71]

C.-Y. Jung and R. Temam, Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers,, Int. J. Numer. Anal. Model., 2 (2005), 367.   Google Scholar

[72]

C.-Y. Jung and R. Temam, On parabolic boundary layers for convection-diffusion equations in a channel: analysis and numerical applications,, J. Sci. Comput., 28 (2006), 361.  doi: 10.1007/s10915-006-9086-8.  Google Scholar

[73]

C.-Y. Jung and R. Temam, Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2347899.  Google Scholar

[74]

C.-Y. Jung and R. Temam, Finite volume approximation of one-dimensional stiff convection-diffusion equations,, J. Sci. Comput., 41 (2009), 384.  doi: 10.1007/s10915-009-9304-2.  Google Scholar

[75]

C.-Y. Jung and R. Temam, Interaction of boundary layers and corner singularities,, Discrete Contin. Dyn. Syst., 23 (2009), 315.  doi: 10.3934/dcds.2009.23.315.  Google Scholar

[76]

C.-Y. Jung and R. Temam, Finite volume approximation of two-dimensional stiff problems,, Int. J. Numer. Anal. Model., 7 (2010), 462.   Google Scholar

[77]

C.-Y. Jung and R. Temam, Convection-diffusion equations in a circle: The compatible case,, J. Math. Pures Appl. (9), 96 (2011), 88.  doi: 10.1016/j.matpur.2011.03.006.  Google Scholar

[78]

C.-Y. Jung and R. Temam, Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: The generic noncompatible case,, SIAM J. Math. Anal., 44 (2012), 4274.  doi: 10.1137/110839515.  Google Scholar

[79]

C.-Y. Jung and R. Temam, Singularly perturbed problems with a turning point: The non-compatible case,, Anal. Appl. (Singap.), 12 (2014), 293.  doi: 10.1142/S0219530513500279.  Google Scholar

[80]

T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary,, in Seminar on Nonlinear Partial Differential Equations (Berkeley, (1983), 85.  doi: 10.1007/978-1-4612-1110-5_6.  Google Scholar

[81]

T. Kato, Remarks on the Euler and Navier-Stokes equations in $R^2$,, in Nonlinear Functional Analysis and its Applications, (1983), 1.   Google Scholar

[82]

J. P. Kelliher, On Kato's conditions for vanishing viscosity,, Indiana Univ. Math. J., 56 (2007), 1711.  doi: 10.1512/iumj.2007.56.3080.  Google Scholar

[83]

J. P. Kelliher, Vanishing viscosity and the accumulation of vorticity on the boundary,, Commun. Math. Sci., 6 (2008), 869.  doi: 10.4310/CMS.2008.v6.n4.a4.  Google Scholar

[84]

J. P. Kelliher, On the vanishing viscosity limit in a disk,, Math. Ann., 343 (2009), 701.  doi: 10.1007/s00208-008-0287-3.  Google Scholar

[85]

R. B. Kellogg and M. Stynes, Corner singularities and boundary layers in a simple convection-diffusion problem,, J. Differential Equations, 213 (2005), 81.  doi: 10.1016/j.jde.2005.02.011.  Google Scholar

[86]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-3968-0.  Google Scholar

[87]

W. Klingenberg, A Course in Differential Geometry,, Translated from the German by David Hoffman, (1978).   Google Scholar

[88]

P. A. Lagerstrom, Matched Asymptotic Expansions. Ideas and Techniques,, Applied Mathematical Sciences, (1988).  doi: 10.1007/978-1-4757-1990-1.  Google Scholar

[89]

N. Levinson, The first boundary value problem for $\varepsilon\Delta u+A(x,y)u_x+B(x,y)u_y+C(x,y)u=D(x,y)$ for small $\varepsilon$,, Ann. of Math. (2), 51 (1950), 428.   Google Scholar

[90]

F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains,, Discrete Contin. Dyn. Syst., 32 (2012), 1391.  doi: 10.3934/dcds.2012.32.1391.  Google Scholar

[91]

J.-L. Lions, Perturbations Singulières Dans Les Problèmes Aux Limites et en Contrôle Optimal,, Lecture Notes in Mathematics, (1973).   Google Scholar

[92]

P.-L. Lions, On the Hamilton-Jacobi-Bellman equations,, Acta Appl. Math., 1 (1983), 17.  doi: 10.1007/BF02433840.  Google Scholar

[93]

M. C. Lombardo and M. Sammartino, Zero viscosity limit of the Oseen equations in a channel,, SIAM J. Math. Anal., 33 (2001), 390.  doi: 10.1137/S0036141000372015.  Google Scholar

[94]

M. C. Lopes Filho, A. L. Mazzucato and H. J. Nussenzveig Lopes, Vanishing viscosity limit for incompressible flow inside a rotating circle,, Phys. D, 237 (2008), 1324.  doi: 10.1016/j.physd.2008.03.009.  Google Scholar

[95]

M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes and M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows,, Bull. Braz. Math. Soc. (N.S.), 39 (2008), 471.  doi: 10.1007/s00574-008-0001-9.  Google Scholar

[96]

M. C. Lopes Filho, Boundary layers and the vanishing viscosity limit for incompressible 2D flow,, in Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 1, (2012), 1.   Google Scholar

[97]

T. Ma and S. Wang, Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 459.  doi: 10.3934/dcds.2004.10.459.  Google Scholar

[98]

T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, (2005).  doi: 10.1142/9789812701152.  Google Scholar

[99]

A. Malchiodi, Construction of multidimensional spike-layers,, Discrete Contin. Dyn. Syst., 14 (2006), 187.  doi: 10.3934/dcds.2006.14.187.  Google Scholar

[100]

N. Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary,, Arch. Rational Mech. Anal., 142 (1998), 375.  doi: 10.1007/s002050050097.  Google Scholar

[101]

H. Matsuzawa, On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments,, Discrete Contin. Dyn. Syst., (2009), 516.   Google Scholar

[102]

A. Mazzucato, D. Niu and X. Wang, Boundary layer associated with a class of 3D nonlinear plane parallel channel flows,, Indiana Univ. Math. J., 60 (2011), 1113.  doi: 10.1512/iumj.2011.60.4479.  Google Scholar

[103]

A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows,, Comm. Partial Differential Equations, 36 (2011), 328.  doi: 10.1080/03605302.2010.505973.  Google Scholar

[104]

A. L. Mazzucato, V. Nistor and Q. Qu, A nonconforming generalized finite element method for transmission problems,, SIAM J. Numer. Anal., 51 (2013), 555.  doi: 10.1137/100816031.  Google Scholar

[105]

A. L. Mazzucato, V. Nistor and Q. Qu, Quasi-optimal rates of convergence for the generalized finite element method in polygonal domains,, J. Comput. Appl. Math., 263 (2014), 466.  doi: 10.1016/j.cam.2013.12.026.  Google Scholar

[106]

N. Möes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing,, International Journal for Numerical Methods in Engineering, 46 (1999), 131.   Google Scholar

[107]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory,, Applied Mathematics and Mathematical Computation, (1999).   Google Scholar

[108]

R. E. O'Malley, Jr., On boundary value problems for a singularly perturbed differential equation with a turning point,, SIAM J. Math. Anal., 1 (1970), 479.  doi: 10.1137/0501041.  Google Scholar

[109]

R. E. O'Malley, Jr., Introduction to Singular Perturbations,, Applied Mathematics and Mechanics, (1974).   Google Scholar

[110]

R. E. O'Malley, Jr., Singular Perturbation Analysis for Ordinary Differential Equations,, Communications of the Mathematical Institute, (1977).   Google Scholar

[111]

R. E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations,, Applied Mathematical Sciences, (1991).  doi: 10.1007/978-1-4612-0977-5.  Google Scholar

[112]

R. E. O'Malley, Jr., Singularly perturbed linear two-point boundary value problems,, SIAM Rev., 50 (2008), 459.  doi: 10.1137/060662058.  Google Scholar

[113]

C. H. Ou and R. Wong, Shooting method for nonlinear singularly perturbed boundary-value problems,, Stud. Appl. Math., 112 (2004), 161.  doi: 10.1111/j.0022-2526.2004.01509.x.  Google Scholar

[114]

L. Prandtl, Verber flüssigkeiten bei sehr kleiner reibung,, in Verk. III Intem. Math. Kongr. Heidelberg, (1905), 484.   Google Scholar

[115]

L. Prandtl, Gesammelte Abhandlungen Zur Angewandten Mechanik, Hydro- und Aerodynamik,, Herausgegeben von Walter Tollmien, (1961).   Google Scholar

[116]

J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 921.  doi: 10.1016/j.anihpc.2006.06.008.  Google Scholar

[117]

W. H. Reid, Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow,, Studies in Appl. Math., 53 (1974), 91.  doi: 10.1002/sapm197453291.  Google Scholar

[118]

W. H. Reid, Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory,, Studies in Appl. Math., 53 (1974), 217.  doi: 10.1002/sapm1974533217.  Google Scholar

[119]

H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems,, Springer Series in Computational Mathematics, (1996).  doi: 10.1007/978-3-662-03206-0.  Google Scholar

[120]

L. Ruan and C. Zhu, Boundary layer for nonlinear evolution equations with damping and diffusion,, Discrete Contin. Dyn. Syst., 32 (2012), 331.  doi: 10.3934/dcds.2012.32.331.  Google Scholar

[121]

H. Schlichting, Boundary Layer Theory,, Translated by J. Kestin, (1955).   Google Scholar

[122]

S.-D. Shih and R. B. Kellogg, Asymptotic analysis of a singular perturbation problem,, SIAM J. Math. Anal., 18 (1987), 1467.  doi: 10.1137/0518107.  Google Scholar

[123]

E. Simonnet, M. Ghil, K. Ide, R. Temam and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation, I. Steady-state solution,, J. Phys. Oceanogr., 33 (2003), 712.  doi: 10.1175/1520-0485(2003)33<712:LVISMO>2.0.CO;2.  Google Scholar

[124]

S. Smale, Smooth solutions of the heat and wave equations,, Comment. Math. Helv., 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[125]

D. R. Smith, Singular-Perturbation Theory. An Introduction with Applications,, Cambridge University Press, (1985).   Google Scholar

[126]

M. Stynes, Steady-state convection-diffusion problems,, Acta Numer., 14 (2005), 445.  doi: 10.1017/S0962492904000261.  Google Scholar

[127]

G. Fu Sun and M. Stynes, Finite element methods on piecewise equidistant meshes for interior turning point problems,, Numer. Algorithms, 8 (1994), 111.  doi: 10.1007/BF02145699.  Google Scholar

[128]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, J. Differential Equations, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[129]

R. Temam and X. Wang, Remarks on the Prandtl equation for a permeable wall,, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl, 80 (2000), 835.  doi: 10.1002/1521-4001(200011)80:11/12<835::AID-ZAMM835>3.0.CO;2-9.  Google Scholar

[130]

R. Temam and X. Wang, Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.  doi: 10.1006/jdeq.2001.4038.  Google Scholar

[131]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

[132]

R. Temam and X. M. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a channel,, Differential Integral Equations, 8 (1995), 1591.   Google Scholar

[133]

R. Temam and X. Wang, Asymptotic analysis of Oseen type equations in a channel at small viscosity,, Indiana Univ. Math. J., 45 (1996), 863.  doi: 10.1512/iumj.1996.45.1290.  Google Scholar

[134]

R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general $2$D domain,, Asymptot. Anal., 14 (1997), 293.   Google Scholar

[135]

R. Temam and X. Wang, Boundary layers for Oseen's type equation in space dimension three,, Russian J. Math. Phys., 5 (1997), 227.   Google Scholar

[136]

N. M. Temme, Analytical methods for an elliptic singular perturbation problem in a circle,, J. Comput. Appl. Math., 207 (2007), 301.  doi: 10.1016/j.cam.2006.10.049.  Google Scholar

[137]

M. Urano, K. Nakashima and Y. Yamada, Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity,, Discrete Contin. Dyn. Syst., (2005), 868.   Google Scholar

[138]

F. Verhulst, Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics,, Texts in Applied Mathematics, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

[139]

M. I. Višik and L. A. Ljusternik, Regular degeneration and boundary layer for linear differential equations with small parameter,, Amer. Math. Soc. Transl. (2), 20 (1962), 239.   Google Scholar

[140]

M. I. Višik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter,, Uspehi Mat. Nauk (N.S.), 12 (1957), 3.   Google Scholar

[141]

T. von Kármán, Progress in the statistical theory of turbulence,, J. Marine Research, 7 (1948), 252.   Google Scholar

[142]

L. Wang and J. Wei, Solutions with interior bubble and boundary layer for an elliptic problem,, Discrete Contin. Dyn. Syst., 21 (2008), 333.  doi: 10.3934/dcds.2008.21.333.  Google Scholar

[143]

L. Wang and C. Zhao, Solutions with clustered bubbles and a boundary layer of an elliptic problem,, Discrete Contin. Dyn. Syst., 34 (2014), 2333.   Google Scholar

[144]

W. Wasow, Linear Turning Point Theory,, Applied Mathematical Sciences, (1985).  doi: 10.1007/978-1-4612-1090-0.  Google Scholar

[145]

R. Wong and H. Yang, On a boundary-layer problem,, Stud. Appl. Math., 108 (2002), 369.  doi: 10.1111/1467-9590.01430.  Google Scholar

[146]

R. Wong and H. Yang, On an internal boundary layer problem,, J. Comput. Appl. Math., 144 (2002), 301.  doi: 10.1016/S0377-0427(01)00569-6.  Google Scholar

[147]

R. Wong and H. Yang, On the Ackerberg-O'Malley resonance,, Stud. Appl. Math., 110 (2003), 157.  doi: 10.1111/1467-9590.00235.  Google Scholar

[148]

R. Wong and Y. Zhao, A singularly perturbed boundary-value problem arising in phase transitions,, European J. Appl. Math., 17 (2006), 705.  doi: 10.1017/S095679250600670X.  Google Scholar

[149]

L. Zhang, Ph.D. Thesis, Indiana University,, in preparation, (2015).   Google Scholar

show all references

References:
[1]

M. Amar, A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions,, Discrete Contin. Dynam. Systems, 6 (2000), 537.  doi: 10.3934/dcds.2000.6.537.  Google Scholar

[2]

I. Andronov, D. Bouche and F. Molinet, Asymptotic and Hybrid Methods in Electromagnetics,, IEE Electromagnetic Waves Series, (2005).  doi: 10.1049/PBEW051E.  Google Scholar

[3]

I. Babuška and J. M. Melenk, The partition of unity method,, Internat. J. Numer. Methods Engrg., 40 (1997), 727.  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.  Google Scholar

[4]

I. Babuška, U. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach,, Acta Numer., 12 (2003), 1.  doi: 10.1017/S0962492902000090.  Google Scholar

[5]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport,, Ann. Sci. École Norm. Sup. (4), 3 (1970), 185.   Google Scholar

[6]

G. K. Batchelor, An Introduction to Fluid Dynamics,, paperback edition, (1999).   Google Scholar

[7]

A. E. Berger, H. De Han and R. B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem,, Math. Comp., 42 (1984), 465.  doi: 10.1090/S0025-5718-1984-0736447-2.  Google Scholar

[8]

O. Botella, Numerical Solution of Navier-Stokes Singular Problem by a Chebyshev Projection Method,, Ph.D. Thesis, (2012).   Google Scholar

[9]

Daniel Bouche and Frédéric Molinet, Méthodes Asymptotiques en Électromagnétisme,, With a preface by Robert Dautray, (1994).   Google Scholar

[10]

R. E. Caflisch and M. Sammartino, Existence and singularities for the Prandtl boundary layer equations,, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl, 80 (2000), 733.  doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L.  Google Scholar

[11]

J. R. Cannon, The One-Dimensional Heat Equation,, With a foreword by Felix E. Browder, (1984).  doi: 10.1017/CBO9781139086967.  Google Scholar

[12]

M. Cannone, M. C. Lombardo and M. Sammartino, Well-posedness of Prandtl equations with non-compatible data,, Nonlinearity, 26 (2013), 3077.  doi: 10.1088/0951-7715/26/12/3077.  Google Scholar

[13]

M. Cannone, M. C. Lombardo and M. Sammartino, On the Prandtl boundary layer equations in presence of corner singularities,, Acta Appl. Math., 132 (2014), 139.  doi: 10.1007/s10440-014-9912-1.  Google Scholar

[14]

T. Chacón-Rebollo, M. Gómez-Mármol and S. Rubino, On the existence and asymptotic stability of solutions for unsteady mixing-layer models,, Discrete Contin. Dyn. Syst., 34 (2014), 421.  doi: 10.3934/dcds.2014.34.421.  Google Scholar

[15]

K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications,, Applied Mathematical Sciences, (1984).  doi: 10.1007/978-1-4612-1114-3.  Google Scholar

[16]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations,, Oxford Lecture Series in Mathematics and its Applications, (2006).   Google Scholar

[17]

Q. Chen, Z. Qin and R. Temam, Numerical resolution near $t=0$ of nonlinear evolution equations in the presence of corner singularities in space dimension 1,, Commun. Comput. Phys., 9 (2011), 568.  doi: 10.4208/cicp.110909.160310s.  Google Scholar

[18]

W. Cheng and R. Temam, Numerical approximation of one-dimensional stationary diffusion equations with boundary layers,, Dedicated to Professor Roger Peyret on the occasion of his 65th birthday (Marseille, 31 (2002), 453.  doi: 10.1016/S0045-7930(01)00060-3.  Google Scholar

[19]

W. Cheng, R. Temam and X. Wang, New approximation algorithms for a class of partial differential equations displaying boundary layer behavior,, Cathleen Morawetz: A great mathematician, 7 (2000), 363.   Google Scholar

[20]

P. G. Ciarlet, An introduction to differential geometry with application to elasticity,, With a foreword by Roger Fosdick, 78/79 (2005).  doi: 10.1007/s10659-005-4738-8.  Google Scholar

[21]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[22]

A. J. DeSanti, Nonmonotone interior layer theory for some singularly perturbed quasilinear boundary value problems with turning points,, SIAM J. Math. Anal., 18 (1987), 321.  doi: 10.1137/0518025.  Google Scholar

[23]

A. J. DeSanti, Perturbed quasilinear Dirichlet problems with isolated turning points,, Comm. Partial Differential Equations, 12 (1987), 223.  doi: 10.1080/03605308708820489.  Google Scholar

[24]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl. (9), 78 (1999), 461.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[25]

Yihong Du, Zongming Guo, and Feng Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar

[26]

Zhuoran Du and Baishun Lai, Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds,, Discrete Contin. Dyn. Syst., 33 (2013), 1407.   Google Scholar

[27]

M. Van Dyke, An Album of Fluid Motion,, The Parabolic Press, (1982).   Google Scholar

[28]

E. Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation,, Acta Math. Sin. (Engl. Ser.), 16 (2000), 207.  doi: 10.1007/s101140000034.  Google Scholar

[29]

W. Eckhaus and E. M. de Jager, Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type,, Arch. Rational Mech. Anal., 23 (1966), 26.  doi: 10.1007/BF00281135.  Google Scholar

[30]

W. Eckhaus, Boundary layers in linear elliptic singular perturbation problems,, SIAM Rev., 14 (1972), 225.  doi: 10.1137/1014030.  Google Scholar

[31]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment,, Discrete Contin. Dyn. Syst., 26 (2010), 901.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[32]

N. Flyer and B. Fornberg, Accurate numerical resolution of transients in initial-boundary value problems for the heat equation,, J. Comput. Phys., 184 (2003), 526.  doi: 10.1016/S0021-9991(02)00034-7.  Google Scholar

[33]

N. Flyer and B. Fornberg, On the nature of initial-boundary value solutions for dispersive equations,, SIAM J. Appl. Math., 64 (): 546.  doi: 10.1137/S0036139902415853.  Google Scholar

[34]

S. Garcia, Aperiodic, chaotic lid-driven square cavity flows,, Math. Comput. Simulation, 81 (2011), 1741.  doi: 10.1016/j.matcom.2011.01.011.  Google Scholar

[35]

G.-M. Gie, Singular perturbation problems in a general smooth domain,, Asymptot. Anal., 62 (2009), 227.   Google Scholar

[36]

G.-M. Gie, Asymptotic expansion of the Stokes solutions at small viscosity: The case of non-compatible initial data,, Commun. Math. Sci., 12 (2014), 383.  doi: 10.4310/CMS.2014.v12.n2.a8.  Google Scholar

[37]

G.-M. Gie, M. Hamouda, C.-Y. Jung and T. Roger, Singular Perturbations and Boundary Layers,, in preparation, (2015).   Google Scholar

[38]

G.-M. Gie, M. Hamouda and R. Temam, Asymptotic analysis of the Stokes problem on general bounded domains: The case of a characteristic boundary,, Appl. Anal., 89 (2010), 49.  doi: 10.1080/00036810903437796.  Google Scholar

[39]

G.-M. Gie, M. Hamouda and R. Temam, Boundary layers in smooth curvilinear domains: Parabolic problems,, Discrete Contin. Dyn. Syst., 26 (2010), 1213.  doi: 10.3934/dcds.2010.26.1213.  Google Scholar

[40]

G.-M. Gie, M. Hamouda and R. Temam, Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary,, Netw. Heterog. Media, 7 (2012), 741.  doi: 10.3934/nhm.2012.7.741.  Google Scholar

[41]

G.-M. Gie and C.-Y. Jung, Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition,, Asymptot. Anal., 84 (2013), 17.   Google Scholar

[42]

G.-M. Gie, C.-Y. Jung and R. Temam, Analysis of mixed elliptic and parabolic boundary layers with corners,, Int. J. Differ. Equ., (2013).   Google Scholar

[43]

G.-M. Gie and J. P. Kelliher, Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions,, J. Differential Equations, 253 (2012), 1862.  doi: 10.1016/j.jde.2012.06.008.  Google Scholar

[44]

G.-M. Gie, J. P. Kelliher, M. C. Lopes Filho, A. L. Mazzucato and H. J. Nussenzveig Lopes, Vanishing viscosity limit of some symmetric flows,, preprint., ().   Google Scholar

[45]

J. Grasman, On the Birth of Boundary Layers,, Mathematical Centre Tracts, (1971).   Google Scholar

[46]

H. P. Greenspan, The Theory of Rotating Fluids,, Reprint of the 1968 original, (1968).   Google Scholar

[47]

Y. Guo and T. Nguyen, A note on Prandtl boundary layers,, Comm. Pure Appl. Math., 64 (2011), 1416.  doi: 10.1002/cpa.20377.  Google Scholar

[48]

Y. Guo and T. Nguyen, Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate,, , ().   Google Scholar

[49]

E. Grenier, Boundary layers,, in Handbook of Mathematical Fluid Dynamics. Vol. III, (2004), 245.   Google Scholar

[50]

E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems,, J. Differential Equations, 143 (1998), 110.  doi: 10.1006/jdeq.1997.3364.  Google Scholar

[51]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[52]

P. Grisvard, Singularities in Boundary Value Problems,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1992).   Google Scholar

[53]

O. Guès, G. Métivier, M. Williams and K. Zumbrun, Boundary layer and long time stability for multidimensional viscous shocks,, Discrete Contin. Dyn. Syst., 11 (2004), 131.  doi: 10.3934/dcds.2004.11.131.  Google Scholar

[54]

M. Hamouda, C.-Y. Jung and R. Temam, Boundary layers for the 2D linearized primitive equations,, Commun. Pure Appl. Anal., 8 (2009), 335.  doi: 10.3934/cpaa.2009.8.335.  Google Scholar

[55]

M. Hamouda, C.-Y. Jung and R. Temam, Asymptotic analysis for the 3D primitive equations in a channel,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 401.   Google Scholar

[56]

M. Hamouda and R. Temam, Some singular perturbation problems related to the Navier-Stokes equations,, in Advances in Deterministic and Stochastic Analysis, (2007), 197.  doi: 10.1142/9789812770493_0011.  Google Scholar

[57]

M. Hamouda and R. Temam, Boundary layers for the Navier-Stokes equations. The case of a characteristic boundary,, Georgian Math. J., 15 (2008), 517.   Google Scholar

[58]

M. Hamouda, R. Temam and L. Zhang, Very weak solutions of the Stokes problem in a convex polygon,, to appear, (2015).   Google Scholar

[59]

D. Han, A. L. Mazzucato, D. Niu and X. Wang, Boundary layer for a class of nonlinear pipe flow,, J. Differential Equations, 252 (2012), 6387.  doi: 10.1016/j.jde.2012.02.012.  Google Scholar

[60]

H. Han and R. B. Kellogg, Differentiability properties of solutions of the equation $-\epsilon^2\Delta u+ru=f(x,y)$ in a square,, SIAM J. Math. Anal., 21 (1990), 394.  doi: 10.1137/0521022.  Google Scholar

[61]

H. De Han and R. B. Kellogg, A method of enriched subspaces for the numerical solution of a parabolic singular perturbation problem,, in Computational and Asymptotic Methods for Boundary and Interior Layers (Dublin, (1982), 46.   Google Scholar

[62]

H. D. Han and R. B. Kellogg, The use of enriched subspaces for singular perturbation problems,, in Proceedings of the China-France Symposium on Finite Element Methods (Beijing, (1982), 293.   Google Scholar

[63]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Reprint of the 1952 edition, (1952).   Google Scholar

[64]

P. W. Hemker, A Numerical Study of Stiff Two-Point Boundary Problems,, Mathematisch Centrum, (1977).   Google Scholar

[65]

Y. Hong, C.-Y. Jung and J. Laminie, Singularly perturbed reaction-diffusion equations in a circle with numerical applications,, Int. J. Comput. Math., 90 (2013), 2308.  doi: 10.1080/00207160.2013.772987.  Google Scholar

[66]

Y. Hong, C.-Y. Jung and R. Temam, On the numerical approximations of stiff convection-diffusion equations in a circle,, Numer. Math., 127 (2014), 291.  doi: 10.1007/s00211-013-0585-x.  Google Scholar

[67]

C.-Y. Jung, Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain,, Asymptot. Anal., 57 (2008), 41.   Google Scholar

[68]

C.-Y. Jung and T. B. Nguyen, Semi-analytical numerical methods for convection-dominated problems with turning points,, Int. J. Numer. Anal. Model., 10 (2013), 314.   Google Scholar

[69]

C.-Y. Jung, M. Petcu and R. Temam, Singular perturbation analysis on a homogeneous ocean circulation model,, Anal. Appl. (Singap.), 9 (2011), 275.  doi: 10.1142/S0219530511001832.  Google Scholar

[70]

C.-Y. Jung and R. Temam, Boundary layer theory for convection-diffusion equations in a circle,, Russian Math. Surveys, 69 (2014), 435.   Google Scholar

[71]

C.-Y. Jung and R. Temam, Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers,, Int. J. Numer. Anal. Model., 2 (2005), 367.   Google Scholar

[72]

C.-Y. Jung and R. Temam, On parabolic boundary layers for convection-diffusion equations in a channel: analysis and numerical applications,, J. Sci. Comput., 28 (2006), 361.  doi: 10.1007/s10915-006-9086-8.  Google Scholar

[73]

C.-Y. Jung and R. Temam, Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2347899.  Google Scholar

[74]

C.-Y. Jung and R. Temam, Finite volume approximation of one-dimensional stiff convection-diffusion equations,, J. Sci. Comput., 41 (2009), 384.  doi: 10.1007/s10915-009-9304-2.  Google Scholar

[75]

C.-Y. Jung and R. Temam, Interaction of boundary layers and corner singularities,, Discrete Contin. Dyn. Syst., 23 (2009), 315.  doi: 10.3934/dcds.2009.23.315.  Google Scholar

[76]

C.-Y. Jung and R. Temam, Finite volume approximation of two-dimensional stiff problems,, Int. J. Numer. Anal. Model., 7 (2010), 462.   Google Scholar

[77]

C.-Y. Jung and R. Temam, Convection-diffusion equations in a circle: The compatible case,, J. Math. Pures Appl. (9), 96 (2011), 88.  doi: 10.1016/j.matpur.2011.03.006.  Google Scholar

[78]

C.-Y. Jung and R. Temam, Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: The generic noncompatible case,, SIAM J. Math. Anal., 44 (2012), 4274.  doi: 10.1137/110839515.  Google Scholar

[79]

C.-Y. Jung and R. Temam, Singularly perturbed problems with a turning point: The non-compatible case,, Anal. Appl. (Singap.), 12 (2014), 293.  doi: 10.1142/S0219530513500279.  Google Scholar

[80]

T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary,, in Seminar on Nonlinear Partial Differential Equations (Berkeley, (1983), 85.  doi: 10.1007/978-1-4612-1110-5_6.  Google Scholar

[81]

T. Kato, Remarks on the Euler and Navier-Stokes equations in $R^2$,, in Nonlinear Functional Analysis and its Applications, (1983), 1.   Google Scholar

[82]

J. P. Kelliher, On Kato's conditions for vanishing viscosity,, Indiana Univ. Math. J., 56 (2007), 1711.  doi: 10.1512/iumj.2007.56.3080.  Google Scholar

[83]

J. P. Kelliher, Vanishing viscosity and the accumulation of vorticity on the boundary,, Commun. Math. Sci., 6 (2008), 869.  doi: 10.4310/CMS.2008.v6.n4.a4.  Google Scholar

[84]

J. P. Kelliher, On the vanishing viscosity limit in a disk,, Math. Ann., 343 (2009), 701.  doi: 10.1007/s00208-008-0287-3.  Google Scholar

[85]

R. B. Kellogg and M. Stynes, Corner singularities and boundary layers in a simple convection-diffusion problem,, J. Differential Equations, 213 (2005), 81.  doi: 10.1016/j.jde.2005.02.011.  Google Scholar

[86]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-3968-0.  Google Scholar

[87]

W. Klingenberg, A Course in Differential Geometry,, Translated from the German by David Hoffman, (1978).   Google Scholar

[88]

P. A. Lagerstrom, Matched Asymptotic Expansions. Ideas and Techniques,, Applied Mathematical Sciences, (1988).  doi: 10.1007/978-1-4757-1990-1.  Google Scholar

[89]

N. Levinson, The first boundary value problem for $\varepsilon\Delta u+A(x,y)u_x+B(x,y)u_y+C(x,y)u=D(x,y)$ for small $\varepsilon$,, Ann. of Math. (2), 51 (1950), 428.   Google Scholar

[90]

F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains,, Discrete Contin. Dyn. Syst., 32 (2012), 1391.  doi: 10.3934/dcds.2012.32.1391.  Google Scholar

[91]

J.-L. Lions, Perturbations Singulières Dans Les Problèmes Aux Limites et en Contrôle Optimal,, Lecture Notes in Mathematics, (1973).   Google Scholar

[92]

P.-L. Lions, On the Hamilton-Jacobi-Bellman equations,, Acta Appl. Math., 1 (1983), 17.  doi: 10.1007/BF02433840.  Google Scholar

[93]

M. C. Lombardo and M. Sammartino, Zero viscosity limit of the Oseen equations in a channel,, SIAM J. Math. Anal., 33 (2001), 390.  doi: 10.1137/S0036141000372015.  Google Scholar

[94]

M. C. Lopes Filho, A. L. Mazzucato and H. J. Nussenzveig Lopes, Vanishing viscosity limit for incompressible flow inside a rotating circle,, Phys. D, 237 (2008), 1324.  doi: 10.1016/j.physd.2008.03.009.  Google Scholar

[95]

M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes and M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows,, Bull. Braz. Math. Soc. (N.S.), 39 (2008), 471.  doi: 10.1007/s00574-008-0001-9.  Google Scholar

[96]

M. C. Lopes Filho, Boundary layers and the vanishing viscosity limit for incompressible 2D flow,, in Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 1, (2012), 1.   Google Scholar

[97]

T. Ma and S. Wang, Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 459.  doi: 10.3934/dcds.2004.10.459.  Google Scholar

[98]

T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, (2005).  doi: 10.1142/9789812701152.  Google Scholar

[99]

A. Malchiodi, Construction of multidimensional spike-layers,, Discrete Contin. Dyn. Syst., 14 (2006), 187.  doi: 10.3934/dcds.2006.14.187.  Google Scholar

[100]

N. Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary,, Arch. Rational Mech. Anal., 142 (1998), 375.  doi: 10.1007/s002050050097.  Google Scholar

[101]

H. Matsuzawa, On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments,, Discrete Contin. Dyn. Syst., (2009), 516.   Google Scholar

[102]

A. Mazzucato, D. Niu and X. Wang, Boundary layer associated with a class of 3D nonlinear plane parallel channel flows,, Indiana Univ. Math. J., 60 (2011), 1113.  doi: 10.1512/iumj.2011.60.4479.  Google Scholar

[103]

A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows,, Comm. Partial Differential Equations, 36 (2011), 328.  doi: 10.1080/03605302.2010.505973.  Google Scholar

[104]

A. L. Mazzucato, V. Nistor and Q. Qu, A nonconforming generalized finite element method for transmission problems,, SIAM J. Numer. Anal., 51 (2013), 555.  doi: 10.1137/100816031.  Google Scholar

[105]

A. L. Mazzucato, V. Nistor and Q. Qu, Quasi-optimal rates of convergence for the generalized finite element method in polygonal domains,, J. Comput. Appl. Math., 263 (2014), 466.  doi: 10.1016/j.cam.2013.12.026.  Google Scholar

[106]

N. Möes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing,, International Journal for Numerical Methods in Engineering, 46 (1999), 131.   Google Scholar

[107]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory,, Applied Mathematics and Mathematical Computation, (1999).   Google Scholar

[108]

R. E. O'Malley, Jr., On boundary value problems for a singularly perturbed differential equation with a turning point,, SIAM J. Math. Anal., 1 (1970), 479.  doi: 10.1137/0501041.  Google Scholar

[109]

R. E. O'Malley, Jr., Introduction to Singular Perturbations,, Applied Mathematics and Mechanics, (1974).   Google Scholar

[110]

R. E. O'Malley, Jr., Singular Perturbation Analysis for Ordinary Differential Equations,, Communications of the Mathematical Institute, (1977).   Google Scholar

[111]

R. E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations,, Applied Mathematical Sciences, (1991).  doi: 10.1007/978-1-4612-0977-5.  Google Scholar

[112]

R. E. O'Malley, Jr., Singularly perturbed linear two-point boundary value problems,, SIAM Rev., 50 (2008), 459.  doi: 10.1137/060662058.  Google Scholar

[113]

C. H. Ou and R. Wong, Shooting method for nonlinear singularly perturbed boundary-value problems,, Stud. Appl. Math., 112 (2004), 161.  doi: 10.1111/j.0022-2526.2004.01509.x.  Google Scholar

[114]

L. Prandtl, Verber flüssigkeiten bei sehr kleiner reibung,, in Verk. III Intem. Math. Kongr. Heidelberg, (1905), 484.   Google Scholar

[115]

L. Prandtl, Gesammelte Abhandlungen Zur Angewandten Mechanik, Hydro- und Aerodynamik,, Herausgegeben von Walter Tollmien, (1961).   Google Scholar

[116]

J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 921.  doi: 10.1016/j.anihpc.2006.06.008.  Google Scholar

[117]

W. H. Reid, Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow,, Studies in Appl. Math., 53 (1974), 91.  doi: 10.1002/sapm197453291.  Google Scholar

[118]

W. H. Reid, Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory,, Studies in Appl. Math., 53 (1974), 217.  doi: 10.1002/sapm1974533217.  Google Scholar

[119]

H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems,, Springer Series in Computational Mathematics, (1996).  doi: 10.1007/978-3-662-03206-0.  Google Scholar

[120]

L. Ruan and C. Zhu, Boundary layer for nonlinear evolution equations with damping and diffusion,, Discrete Contin. Dyn. Syst., 32 (2012), 331.  doi: 10.3934/dcds.2012.32.331.  Google Scholar

[121]

H. Schlichting, Boundary Layer Theory,, Translated by J. Kestin, (1955).   Google Scholar

[122]

S.-D. Shih and R. B. Kellogg, Asymptotic analysis of a singular perturbation problem,, SIAM J. Math. Anal., 18 (1987), 1467.  doi: 10.1137/0518107.  Google Scholar

[123]

E. Simonnet, M. Ghil, K. Ide, R. Temam and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation, I. Steady-state solution,, J. Phys. Oceanogr., 33 (2003), 712.  doi: 10.1175/1520-0485(2003)33<712:LVISMO>2.0.CO;2.  Google Scholar

[124]

S. Smale, Smooth solutions of the heat and wave equations,, Comment. Math. Helv., 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[125]

D. R. Smith, Singular-Perturbation Theory. An Introduction with Applications,, Cambridge University Press, (1985).   Google Scholar

[126]

M. Stynes, Steady-state convection-diffusion problems,, Acta Numer., 14 (2005), 445.  doi: 10.1017/S0962492904000261.  Google Scholar

[127]

G. Fu Sun and M. Stynes, Finite element methods on piecewise equidistant meshes for interior turning point problems,, Numer. Algorithms, 8 (1994), 111.  doi: 10.1007/BF02145699.  Google Scholar

[128]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, J. Differential Equations, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[129]

R. Temam and X. Wang, Remarks on the Prandtl equation for a permeable wall,, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl, 80 (2000), 835.  doi: 10.1002/1521-4001(200011)80:11/12<835::AID-ZAMM835>3.0.CO;2-9.  Google Scholar

[130]

R. Temam and X. Wang, Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.  doi: 10.1006/jdeq.2001.4038.  Google Scholar

[131]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

[132]

R. Temam and X. M. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a channel,, Differential Integral Equations, 8 (1995), 1591.   Google Scholar

[133]

R. Temam and X. Wang, Asymptotic analysis of Oseen type equations in a channel at small viscosity,, Indiana Univ. Math. J., 45 (1996), 863.  doi: 10.1512/iumj.1996.45.1290.  Google Scholar

[134]

R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general $2$D domain,, Asymptot. Anal., 14 (1997), 293.   Google Scholar

[135]

R. Temam and X. Wang, Boundary layers for Oseen's type equation in space dimension three,, Russian J. Math. Phys., 5 (1997), 227.   Google Scholar

[136]

N. M. Temme, Analytical methods for an elliptic singular perturbation problem in a circle,, J. Comput. Appl. Math., 207 (2007), 301.  doi: 10.1016/j.cam.2006.10.049.  Google Scholar

[137]

M. Urano, K. Nakashima and Y. Yamada, Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity,, Discrete Contin. Dyn. Syst., (2005), 868.   Google Scholar

[138]

F. Verhulst, Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics,, Texts in Applied Mathematics, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

[139]

M. I. Višik and L. A. Ljusternik, Regular degeneration and boundary layer for linear differential equations with small parameter,, Amer. Math. Soc. Transl. (2), 20 (1962), 239.   Google Scholar

[140]

M. I. Višik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter,, Uspehi Mat. Nauk (N.S.), 12 (1957), 3.   Google Scholar

[141]

T. von Kármán, Progress in the statistical theory of turbulence,, J. Marine Research, 7 (1948), 252.   Google Scholar

[142]

L. Wang and J. Wei, Solutions with interior bubble and boundary layer for an elliptic problem,, Discrete Contin. Dyn. Syst., 21 (2008), 333.  doi: 10.3934/dcds.2008.21.333.  Google Scholar

[143]

L. Wang and C. Zhao, Solutions with clustered bubbles and a boundary layer of an elliptic problem,, Discrete Contin. Dyn. Syst., 34 (2014), 2333.   Google Scholar

[144]

W. Wasow, Linear Turning Point Theory,, Applied Mathematical Sciences, (1985).  doi: 10.1007/978-1-4612-1090-0.  Google Scholar

[145]

R. Wong and H. Yang, On a boundary-layer problem,, Stud. Appl. Math., 108 (2002), 369.  doi: 10.1111/1467-9590.01430.  Google Scholar

[146]

R. Wong and H. Yang, On an internal boundary layer problem,, J. Comput. Appl. Math., 144 (2002), 301.  doi: 10.1016/S0377-0427(01)00569-6.  Google Scholar

[147]

R. Wong and H. Yang, On the Ackerberg-O'Malley resonance,, Stud. Appl. Math., 110 (2003), 157.  doi: 10.1111/1467-9590.00235.  Google Scholar

[148]

R. Wong and Y. Zhao, A singularly perturbed boundary-value problem arising in phase transitions,, European J. Appl. Math., 17 (2006), 705.  doi: 10.1017/S095679250600670X.  Google Scholar

[149]

L. Zhang, Ph.D. Thesis, Indiana University,, in preparation, (2015).   Google Scholar

[1]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[2]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[3]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[4]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[5]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[6]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[7]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[8]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335

[9]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[10]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[11]

Andrea Malchiodi. Construction of multidimensional spike-layers. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 187-202. doi: 10.3934/dcds.2006.14.187

[12]

Weishi Liu. Geometric approach to a singular boundary value problem with turning points. Conference Publications, 2005, 2005 (Special) : 624-633. doi: 10.3934/proc.2005.2005.624

[13]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[14]

Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193

[15]

Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020055

[16]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[17]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[18]

Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure & Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043

[19]

Salvatore Rionero. Onset of convection in rotating porous layers via a new approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2279-2296. doi: 10.3934/dcdsb.2014.19.2279

[20]

Pingzheng Zhang, Jianhua Sun. Clustered layers for the Schrödinger-Maxwell system on a ball. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 657-688. doi: 10.3934/dcds.2006.16.657

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]