Citation: |
[1] |
M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions, Trans. Amer. Math. Soc., 363 (2011), 4203-4224.doi: 10.1090/S0002-9947-2011-05174-3. |
[2] |
G. Buttazzo, L. De Pascale and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory, Phys. Rev. A, 85 (2012), 062502.doi: 10.1103/PhysRevA.85.062502. |
[3] |
G. Carlier, On a class of multidimensional optimal transportation problems, J. Convex Anal., 10 (2003), 517-529. |
[4] |
G. Carlier and B. Nazaret, Optimal transportation for the determinant, ESAIM Control Optim. Calc., 14 (2008), 678-698.doi: 10.1051/cocv:2008006. |
[5] |
P.-A. Chiappori, R. J. McCann and L. P. Nesheim, Hedonic price equilibria, stable matching, and optimal transport: Equivalence, topology, and uniqueness, Econom. Theory, 42 (2010), 317-354.doi: 10.1007/s00199-009-0455-z. |
[6] |
M. Colombo, L. De Pascale and S. Di Marino, Mutlimarginal optimal transport maps for 1-dimensional repulsive costs, Canad. J. Math., 67 (2015), 350-368.doi: 10.4153/CJM-2014-011-x. |
[7] |
W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math., 177 (1996), 113-161. |
[8] |
W. Gangbo and A. Swiech, Optimal maps for the multidimensional Monge-Kantorovich problem, Comm. Pure Appl. Math., 51 (1998), 23-45.doi: 10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H. |
[9] |
N. Ghoussoub and A. Moameni, A self-dual polar factorization for vector fields, Comm. Pure Appl. Math., 66 (2013), 905-933.doi: 10.1002/cpa.21430. |
[10] |
N. Ghoussoub and A. Moameni, Symmetric Monge-Kantorovich problems and polar decompositions of vector fields, Geom. Funct. Anal., 24 (2014), 1129-1166.doi: 10.1007/s00039-014-0287-2. |
[11] |
N. E. Gretsky, J. M. Ostroy and W. R. Zame, Perfect competition in the continuous assignment model, J. Econ. Theory, 88 (1999), 60-118.doi: 10.1006/jeth.1999.2540. |
[12] |
H. Heinich, Probleme de Monge pour n probabilities, C.R. Math. Acad. Sci. Paris, 334 (2002), 793-795.doi: 10.1016/S1631-073X(02)02341-5. |
[13] |
Y.-H. Kim and B. Pass, A general condition for Monge solutions in the multi-marginal optimal transport problem, SIAM J. Math. Anal., 46 (2014), 1538-1550.doi: 10.1137/130930443. |
[14] |
V. Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem, Set-Valued Analysis, 7 (1999), 7-32.doi: 10.1023/A:1008753021652. |
[15] |
G. Loeper, Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., 199 (2011), 269-289.doi: 10.1007/s00205-010-0330-x. |
[16] |
B. Pass, Uniqueness and monge solutions in the multimarginal optimal transportation problem, SIAM J. Math. Anal., 43 (2011), 2758-2775.doi: 10.1137/100804917. |
[17] |
B. Pass, Remarks on the semi-classical Hohenberg-Kohn functional, Nonlinearity, 26 (2013), 2731-2744.doi: 10.1088/0951-7715/26/9/2731. |
[18] |
S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl., 29 (1985), 647-676. |
[19] |
S. T. Rachev and L. Rüchendorf, Mass Transportation Problems. Vol. I. Theory, Probability and its Applications (New York), Springer-Verlag, New York, 1998. |
[20] |
C. Villani, Optimal Transport, Old and New, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |