\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions

Abstract Related Papers Cited by
  • We obtain existence and conormal Sobolev regularity of strong solutions to the 3D compressible isentropic Navier-Stokes system on the half-space with a Navier boundary condition, over a time that is uniform with respect to the viscosity parameters when these are small. These solutions then converge globally in space and strongly in $L^2$ towards the solution of the compressible isentropic Euler system when the viscosity parameters go to zero.
    Mathematics Subject Classification: Primary: 35Q30, 76N10; Secondary: 76N20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Ancona and S. Bianchini, Vanishing viscosity solutions of hyperbolic systems of conservation laws with boundary, in "WASCOM 2005''-13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ, 2006, 13-21.doi: 10.1142/9789812773616_0003.

    [2]

    C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.doi: 10.1016/0022-247X(72)90019-4.

    [3]

    C. Bardos, F. Golse and L. Paillard, The incompressible Euler limit of the Boltzmann equation with accommodation boundary condition, Commun. Math. Sci., 10 (2012), 159-190.doi: 10.4310/CMS.2012.v10.n1.a9.

    [4]

    H. Beirão da Veiga and F. Crispo, The 3-D inviscid limit result under slip boundary conditions. A negative answer, J. Math. Fluid Mech., 14 (2012), 55-59.doi: 10.1007/s00021-010-0047-5.

    [5]

    D. Bresch, B. Desjardins and D. Gérard-Varet, On compressible Navier-Stokes equations with density dependent viscosities in bounded domains, J. Math. Pures Appl. (9), 87 (2007), 227-235.doi: 10.1016/j.matpur.2006.10.010.

    [6]

    D. Bucur, A.-L. Dalibard and D. Gérard-Varet, Wall laws for viscous fluids near rough surfaces, in Mathematical and Numerical Approaches for Multiscale Problem, ESAIM Proc., 37, EDP Sci., Les Ulis, 2012, 117-135.doi: 10.1051/proc/201237003.

    [7]

    M. Bulíček, J. Málek and K. R. Rajagopal, Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.doi: 10.1512/iumj.2007.56.2997.

    [8]

    T. Clopeau, A. Mikelić and R. Robert, On the vanishing viscosity limit for the $2D$ incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625-1636.doi: 10.1088/0951-7715/11/6/011.

    [9]

    R. Danchin, A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations, Sci. China Math., 55 (2012), 245-275.doi: 10.1007/s11425-011-4357-8.

    [10]

    B. Desjardins and C.-K. Lin, A survey of the compressible Navier-Stokes equations, Taiwanese J. Math., 3 (1999), 123-137.

    [11]

    E. Feireisl and A. Novotný, Inviscid incompressible limits of the full Navier-Stokes-Fourier system, Comm. Math. Phys., 321 (2013), 605-628.doi: 10.1007/s00220-013-1691-4.

    [12]

    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976.

    [13]

    D. Gérard-Varet and N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary, Comm. Math. Phys., 295 (2010), 99-137.doi: 10.1007/s00220-009-0976-0.

    [14]

    O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15 (1990), 595-645.doi: 10.1080/03605309908820701.

    [15]

    O. Guès, G. Métivier, M. Williams and K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations, Arch. Ration. Mech. Anal., 197 (2010), 1-87.doi: 10.1007/s00205-009-0277-y.

    [16]

    D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.doi: 10.1007/s00021-004-0123-9.

    [17]

    L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. (2), 83 (1966), 129-209.doi: 10.2307/1970473.

    [18]

    F. Huang, Y. Wang and T. Yang, Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem, Arch. Ration. Mech. Anal., 203 (2012), 379-413.doi: 10.1007/s00205-011-0450-y.

    [19]

    D. Iftimie and G. Planas, Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions, Nonlinearity, 19 (2006), 899-918.doi: 10.1088/0951-7715/19/4/007.

    [20]

    D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145-175.doi: 10.1007/s00205-010-0320-z.

    [21]

    W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 170 (2001), 96-122.doi: 10.1006/jdeq.2000.3814.

    [22]

    J. P. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., 38 (2006), 210-232 (electronic).doi: 10.1137/040612336.

    [23]

    P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627.doi: 10.1016/S0021-7824(98)80139-6.

    [24]

    P.-L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1335-1340.

    [25]

    P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1998.

    [26]

    N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, preprint, arXiv:1202.0657.

    [27]

    N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529-575.doi: 10.1007/s00205-011-0456-5.

    [28]

    N. Masmoudi and L. Saint-Raymond, From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Comm. Pure Appl. Math., 56 (2003), 1263-1293.doi: 10.1002/cpa.10095.

    [29]

    G. Métivier and K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., 175 (2005), vi+107.doi: 10.1090/memo/0826.

    [30]

    J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497.

    [31]

    C.-L.-M.-H. Navier, Mémoire sur les lois du mouvement des fluides, Mém. Acad. Roy. Sci. Inst. France, 6 (1823), 389-410. Available from: http://gallica.bnf.fr/ark:/12148/bpt6k3221x/f577.

    [32]

    M. Paddick, Stability and instability of Navier boundary layers, Differential Integral Equations, 27 (2014), 893-930. Available from: http://projecteuclid.org/euclid.die/1404230050.

    [33]

    D. Pal, N. Rudraiah and R. Devanathan, The effects of slip velocity at a membrane surface on blood flow in the microcirculation, J. Math. Biol., 26 (1988), 705-712.doi: 10.1007/BF00276149.

    [34]

    T. Qian, X.-P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.doi: 10.1103/PhysRevE.68.016306.

    [35]

    J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167-187.doi: 10.1090/S0002-9947-1985-0797053-4.

    [36]

    F. Rousset, Characteristic boundary layers in real vanishing viscosity limits, J. Differential Equations, 210 (2005), 25-64.doi: 10.1016/j.jde.2004.10.004.

    [37]

    S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75. Available from: http://projecteuclid.org/getRecord?id=euclid.cmp/1104114932.doi: 10.1007/BF01210792.

    [38]

    P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal., 134 (1996), 155-197.doi: 10.1007/BF00379552.

    [39]

    P. Secchi, Some properties of anisotropic Sobolev spaces, Arch. Math. (Basel), 75 (2000), 207-216.doi: 10.1007/s000130050494.

    [40]

    V. A. Solonnikov, The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid. Investigations on linear operators and theory of functions, VI, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), 128-142, 197.

    [41]

    F. Sueur, On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain, J. Math. Fluid Mech., 16 (2014), 163-178.doi: 10.1007/s00021-013-0145-2.

    [42]

    X.-P. Wang, Y.-G. Wang and Z. Xin, Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit, Commun. Math. Sci., 8 (2010), 965-998. Available from: http://projecteuclid.org/getRecord?id=euclid.cms/1288725268.doi: 10.4310/CMS.2010.v8.n4.a10.

    [43]

    Y.-G. Wang and M. Williams, The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions, Ann. Inst. Fourier (Grenoble), 62 (2012), 2257-2314 (2013).doi: 10.5802/aif.2749.

    [44]

    Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.doi: 10.1002/cpa.20187.

    [45]

    Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

    [46]

    Z. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane, Comm. Pure Appl. Math., 52 (1999), 479-541.doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.0.CO;2-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return