\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Random attractor of stochastic Brusselator system with multiplicative noise

Abstract Related Papers Cited by
  • Asymptotic dynamics of stochastic Brusselator system with multiplicative noise is investigated in this work. The existence of random attractor is proved via the exponential transformation of Ornstein-Uhlenbeck process and some challenging estimates. The proof of pullback asymptotic compactness here is more rigorous through the bootstrap pullback estimations than a non-dynamical substitution of Brownian motion by its backward translation. It is also shown that the random attractor has the attracting regularity to be an $(L^2\times L^2,H^1\times H^1)$ random attractor.
    Mathematics Subject Classification: 37L30, 35B40, 35B41, 35K55, 80A32, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.doi: 10.1007/978-3-662-12878-7.

    [2]

    A. V. Babin and M. I. Vishik, Regular attractors of semigroups of evolutionary equations, J. Math. Pures Appl., 62 (1983), 441-491.

    [3]

    P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.doi: 10.1016/j.jde.2008.05.017.

    [4]

    T. Caraballo, J. A. Langa and J. C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, Proc. R. Soc. Lond. A, 457 (2001), 2041-2061.doi: 10.1098/rspa.2001.0819.

    [5]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.

    [6]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341.doi: 10.1007/BF02219225.

    [7]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705.

    [8]

    F. Flandoli and B. Schmalfu$\beta$, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.doi: 10.1080/17442509608834083.

    [9]

    M. Ghergu and V. D. Rădulescu, Nonlinear PDEs: Mathematical Modles in Biology, Chemistry and Population Genetics, Springer, Berlin Heidelberg, 2012.doi: 10.1007/978-3-642-22664-9.

    [10]

    P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London, Ser. A, 463 (2007), 163-181.doi: 10.1098/rspa.2006.1753.

    [11]

    L. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems, J. Chem. Physics, 48 (1968), 1695-1700.

    [12]

    J. C. Robinson, Stability of random attractors under perturbation and approximation, Journal of Differential Equations, 186 (2002), 652-669.doi: 10.1016/S0022-0396(02)00038-4.

    [13]

    J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, UK, 2001.doi: 10.1007/978-94-010-0732-0.

    [14]

    R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9.

    [15]

    B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 269-300.doi: 10.3934/dcds.2014.34.269.

    [16]

    Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems, Nonl. Anal. A, 75 (2012), 3049-3071.doi: 10.1016/j.na.2011.12.002.

    [17]

    Y. You, Random attractors and robustness for stochastic reversible reaction-diffusion systems, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 301-333.doi: 10.3934/dcds.2014.34.301.

    [18]

    W. Zhao, $H^1$-random attractors for stochastic reaction-diffusion equations with additive noise, Nonl. Anal. A, 84 (2013), 61-72.doi: 10.1016/j.na.2013.01.014.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return