• Previous Article
    Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation
  • DCDS Home
  • This Issue
  • Next Article
    Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds
January  2016, 36(1): 279-302. doi: 10.3934/dcds.2016.36.279

Bang-bang property of time optimal controls of semilinear parabolic equation

1. 

Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstraße 36, 8010 Graz

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072

Received  June 2014 Revised  March 2015 Published  June 2015

The bang-bang property of time optimal controls for a semilinear parabolic equation, with homogeneous Dirichlet boundary condition and distributed controls acting on an open subset of the domain is established. This relies on an observability estimate from a measurable set in time for a linear parabolic equation, with potential depending on both space and time variables. The proof of the bang-bang property relies on a Kakutani fixed point argument.
Citation: Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279
References:
[1]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Academic Press, (1993). Google Scholar

[2]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93. doi: 10.1016/S0167-6911(96)00083-7. Google Scholar

[3]

H. O. Fattorini, Time optimal control of solutions of operational differential equations,, J. SIAM Control, 2 (1964), 54. doi: 10.1137/0302005. Google Scholar

[4]

H. O. Fattorini, Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems,, North-Holland Mathematics Studies 201, (2005). Google Scholar

[5]

K. Kunisch and L. J. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints,, J. Math. Anal. Appl., 395 (2012), 114. doi: 10.1016/j.jmaa.2012.05.028. Google Scholar

[6]

K. Kunisch and L. J. Wang, Time optimal control of the heat equation with pointwise control constraints,, ESAIM: Control Optim. Calc. Var., 19 (2013), 460. doi: 10.1051/cocv/2012017. Google Scholar

[7]

K. Kunisch and L. J. Wang, Bang-bang property of time optimal controls of Burgers equation,, Discrete Contin. Dyn. Syst., 34 (2014), 3611. doi: 10.3934/dcds.2014.34.3611. Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of parabolic Type,, American Mathematical Society, (1968). Google Scholar

[9]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer, (1971). Google Scholar

[10]

V. J. Mizel and T. I. Seidman, An abstract bang-bang principle and time optimal boundary control of the heat equation,, SIAM J. Control Optim., 35 (1997), 1204. doi: 10.1137/S0363012996265470. Google Scholar

[11]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain,, J. Funct. Anal., 259 (2010), 1230. doi: 10.1016/j.jfa.2010.04.015. Google Scholar

[12]

K. D. Phung, L. J. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477. doi: 10.1016/j.anihpc.2013.04.005. Google Scholar

[13]

G. S. Wang, $L^\infty$-null controllability for the heat equtaion and its consequences for the time optimal control problem,, SIAM J. Control Optim., 47 (2008), 1701. doi: 10.1137/060678191. Google Scholar

[14]

G. S. Wang and L. J. Wang, The Bang-Bang principle of time optimal controls for the heat equation with internal controls,, Systems Control Lett., 56 (2007), 709. doi: 10.1016/j.sysconle.2007.06.001. Google Scholar

[15]

L. J. Wang and G. S. Wang, The optimal time control of a phase-field system,, SIAM J. Control Optim., 42 (2003), 1483. doi: 10.1137/S0363012902405455. Google Scholar

show all references

References:
[1]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Academic Press, (1993). Google Scholar

[2]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93. doi: 10.1016/S0167-6911(96)00083-7. Google Scholar

[3]

H. O. Fattorini, Time optimal control of solutions of operational differential equations,, J. SIAM Control, 2 (1964), 54. doi: 10.1137/0302005. Google Scholar

[4]

H. O. Fattorini, Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems,, North-Holland Mathematics Studies 201, (2005). Google Scholar

[5]

K. Kunisch and L. J. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints,, J. Math. Anal. Appl., 395 (2012), 114. doi: 10.1016/j.jmaa.2012.05.028. Google Scholar

[6]

K. Kunisch and L. J. Wang, Time optimal control of the heat equation with pointwise control constraints,, ESAIM: Control Optim. Calc. Var., 19 (2013), 460. doi: 10.1051/cocv/2012017. Google Scholar

[7]

K. Kunisch and L. J. Wang, Bang-bang property of time optimal controls of Burgers equation,, Discrete Contin. Dyn. Syst., 34 (2014), 3611. doi: 10.3934/dcds.2014.34.3611. Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of parabolic Type,, American Mathematical Society, (1968). Google Scholar

[9]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer, (1971). Google Scholar

[10]

V. J. Mizel and T. I. Seidman, An abstract bang-bang principle and time optimal boundary control of the heat equation,, SIAM J. Control Optim., 35 (1997), 1204. doi: 10.1137/S0363012996265470. Google Scholar

[11]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain,, J. Funct. Anal., 259 (2010), 1230. doi: 10.1016/j.jfa.2010.04.015. Google Scholar

[12]

K. D. Phung, L. J. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477. doi: 10.1016/j.anihpc.2013.04.005. Google Scholar

[13]

G. S. Wang, $L^\infty$-null controllability for the heat equtaion and its consequences for the time optimal control problem,, SIAM J. Control Optim., 47 (2008), 1701. doi: 10.1137/060678191. Google Scholar

[14]

G. S. Wang and L. J. Wang, The Bang-Bang principle of time optimal controls for the heat equation with internal controls,, Systems Control Lett., 56 (2007), 709. doi: 10.1016/j.sysconle.2007.06.001. Google Scholar

[15]

L. J. Wang and G. S. Wang, The optimal time control of a phase-field system,, SIAM J. Control Optim., 42 (2003), 1483. doi: 10.1137/S0363012902405455. Google Scholar

[1]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[2]

Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control & Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005

[3]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[4]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

[5]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[6]

M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511

[7]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[8]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[9]

Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060

[10]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[11]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[12]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[13]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[14]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[15]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

[16]

J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131

[17]

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519

[18]

Vilmos Komornik, Paola Loreti. Observability of rectangular membranes and plates on small sets. Evolution Equations & Control Theory, 2014, 3 (2) : 287-304. doi: 10.3934/eect.2014.3.287

[19]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[20]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]