• Previous Article
    On the Cauchy problem of a three-component Camassa--Holm equations
  • DCDS Home
  • This Issue
  • Next Article
    Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces
May  2016, 36(5): 2855-2871. doi: 10.3934/dcds.2016.36.2855

A note on quasilinear wave equations in two space dimensions

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  June 2015 Revised  September 2015 Published  October 2015

In this paper, we give an alternative proof of Alinhac's global existence result for the Cauchy problem of quasilinear wave equations with both null conditions in two space dimensions[S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math. 145 (2001) 597--618]. The innovation in our proof is that when applying the vector fields method to do the generalized energy estimates, we don't employ the Lorentz boost operator and only use the general space-time derivatives, spatial rotation and scaling operator.
Citation: Dongbing Zha. A note on quasilinear wave equations in two space dimensions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2855-2871. doi: 10.3934/dcds.2016.36.2855
References:
[1]

R. Agemi, Global existence of nonlinear elastic waves,, Invent. Math., 142 (2000), 225. doi: 10.1007/s002220000084. Google Scholar

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597. doi: 10.1007/s002220100165. Google Scholar

[3]

S. Alinhac, Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux,, Invent. Math., 111 (1993), 627. doi: 10.1007/BF01231301. Google Scholar

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, Comm. Pure Appl. Math., 39 (1986), 267. doi: 10.1002/cpa.3160390205. Google Scholar

[5]

D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, vol. 41 of Princeton Mathematical Series,, Princeton University Press, (1993). Google Scholar

[6]

J. Helms, Private communication via E-mail,, Oct. 2014., (2014). Google Scholar

[7]

L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (1997). Google Scholar

[8]

A. Hoshiga, The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space,, Funkcial. Ekvac., 49 (2006), 357. doi: 10.1619/fesi.49.357. Google Scholar

[9]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, (1984), 293. Google Scholar

[10]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D,, Comm. Pure Appl. Math., 49 (1996), 307. doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H. Google Scholar

[11]

H. Lindblad and I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge,, Ann. of Math. (2), 171 (2010), 1401. doi: 10.4007/annals.2010.171.1401. Google Scholar

[12]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains,, Math. Z., 256 (2007), 521. doi: 10.1007/s00209-006-0083-2. Google Scholar

[13]

T. C. Sideris, Delayed singularity formation in 2D compressible flow,, Amer. J. Math., 119 (1997), 371. doi: 10.1353/ajm.1997.0014. Google Scholar

[14]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, Ann. of Math. (2), 151 (2000), 849. doi: 10.2307/121050. Google Scholar

[15]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics,, Comm. Pure Appl. Math., 60 (2007), 1707. doi: 10.1002/cpa.20196. Google Scholar

[16]

T. C. Sideris and S.-Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds,, SIAM J. Math. Anal., 33 (2001), 477. doi: 10.1137/S0036141000378966. Google Scholar

[17]

S. Yang, Global solutions of nonlinear wave equations in time dependent inhomogeneous media,, Arch. Ration. Mech. Anal., 209 (2013), 683. doi: 10.1007/s00205-013-0631-y. Google Scholar

show all references

References:
[1]

R. Agemi, Global existence of nonlinear elastic waves,, Invent. Math., 142 (2000), 225. doi: 10.1007/s002220000084. Google Scholar

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597. doi: 10.1007/s002220100165. Google Scholar

[3]

S. Alinhac, Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux,, Invent. Math., 111 (1993), 627. doi: 10.1007/BF01231301. Google Scholar

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, Comm. Pure Appl. Math., 39 (1986), 267. doi: 10.1002/cpa.3160390205. Google Scholar

[5]

D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, vol. 41 of Princeton Mathematical Series,, Princeton University Press, (1993). Google Scholar

[6]

J. Helms, Private communication via E-mail,, Oct. 2014., (2014). Google Scholar

[7]

L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (1997). Google Scholar

[8]

A. Hoshiga, The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space,, Funkcial. Ekvac., 49 (2006), 357. doi: 10.1619/fesi.49.357. Google Scholar

[9]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, (1984), 293. Google Scholar

[10]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D,, Comm. Pure Appl. Math., 49 (1996), 307. doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H. Google Scholar

[11]

H. Lindblad and I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge,, Ann. of Math. (2), 171 (2010), 1401. doi: 10.4007/annals.2010.171.1401. Google Scholar

[12]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains,, Math. Z., 256 (2007), 521. doi: 10.1007/s00209-006-0083-2. Google Scholar

[13]

T. C. Sideris, Delayed singularity formation in 2D compressible flow,, Amer. J. Math., 119 (1997), 371. doi: 10.1353/ajm.1997.0014. Google Scholar

[14]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, Ann. of Math. (2), 151 (2000), 849. doi: 10.2307/121050. Google Scholar

[15]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics,, Comm. Pure Appl. Math., 60 (2007), 1707. doi: 10.1002/cpa.20196. Google Scholar

[16]

T. C. Sideris and S.-Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds,, SIAM J. Math. Anal., 33 (2001), 477. doi: 10.1137/S0036141000378966. Google Scholar

[17]

S. Yang, Global solutions of nonlinear wave equations in time dependent inhomogeneous media,, Arch. Ration. Mech. Anal., 209 (2013), 683. doi: 10.1007/s00205-013-0631-y. Google Scholar

[1]

Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations & Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319

[2]

Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377

[3]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[4]

M. Petcu, Roger Temam, D. Wirosoetisno. Existence and regularity results for the primitive equations in two space dimensions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 115-131. doi: 10.3934/cpaa.2004.3.115

[5]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[6]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[7]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[8]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[9]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[10]

Nathan Glatt-Holtz, Mohammed Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 801-822. doi: 10.3934/dcdsb.2008.10.801

[11]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[12]

Akihiro Shimomura. Modified wave operators for the coupled wave-Schrödinger equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1571-1586. doi: 10.3934/dcds.2003.9.1571

[13]

Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547

[14]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[15]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[16]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[17]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[18]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[19]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[20]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]