• Previous Article
    Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise
  • DCDS Home
  • This Issue
  • Next Article
    A note on quasilinear wave equations in two space dimensions
May  2016, 36(5): 2873-2886. doi: 10.3934/dcds.2016.36.2873

Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States

Received  July 2015 Revised  August 2015 Published  October 2015

A class of piecewise twice-differentiable Lozi-like maps in three-dimensional Euclidean spaces is introduced, and the existence of Sinai-Ruelle-Bowen measures is studied, where the dimension of the instability is equal to two. Further, an example with computer simulations is provided to illustrate the theoretical results.
Citation: Xu Zhang. Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2873-2886. doi: 10.3934/dcds.2016.36.2873
References:
[1]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps,, J. Mod. Dyn., 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[2]

L. Barreira and Ya. Pesin, Lectures on Lyapunov exponents and smooth ergodic theory,, in Smooth Ergodic Theory and its Applications (Seattle, (1999), 3. doi: 10.1090/pspum/069/1858534. Google Scholar

[3]

L. Barreira and Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, Univ. Lect. Series, (2002). Google Scholar

[4]

M. Benedicks and L. Carleson, The dynamics of the Hénon map,, Ann. of Math., 133 (1991), 73. doi: 10.2307/2944326. Google Scholar

[5]

M. Benedicks and L. S. Young, Sinai-Bowen-Ruelle measure for certain Hénon maps,, Invent. Math., 112 (1993), 541. doi: 10.1007/BF01232446. Google Scholar

[6]

M. Di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer, Local analysis of C-bifurcation in $n$-dimensional piecewise-smooth dynamical systems,, Chaos Solitons Fractals, 10 (1999), 1881. doi: 10.1016/S0960-0779(98)00317-8. Google Scholar

[7]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lect. Notes Math., (1975). Google Scholar

[8]

A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. Probability and its Applications,, Birkhäuser, (1997). doi: 10.1007/978-1-4612-2024-4. Google Scholar

[9]

N. Chernov and R. Markarian, Chaotic Billiards,, Mathematical Surveys and Monographs, (2006). doi: 10.1090/surv/127. Google Scholar

[10]

P. Collet and Y. Levy, Ergodic properties of the Lozi mappings,, Commun. Math. Phys., 93 (1984), 461. doi: 10.1007/BF01212290. Google Scholar

[11]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777. doi: 10.1090/S0002-9947-08-04464-4. Google Scholar

[12]

Z. Elhadj, Lozi Mappings. Theory and Applications,, CRC Press, (2014). Google Scholar

[13]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992). Google Scholar

[14]

M. Jakobson and S. Newhouse, A two-dimensional version of the folklore theorem,, in Sinai's Moscow Seminar on Dynamical Systems, (1996), 89. Google Scholar

[15]

M. Jessa, Data encryption algorithms using one dimensional chaotic maps,, IEEE Int. Symp. on Circuits and Systems, (2000), 28. doi: 10.1109/ISCAS.2000.857194. Google Scholar

[16]

A. Katok, J. M. Strelcyn, A. Ledrappier and F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities,, Lect. Notes. Math., (1222). Google Scholar

[17]

T. Kohda, Y. Ookubo and K. Ishii, A color image communication using YIQ signals by spread spectrum techniques,, Proc. IEEE Int. Symp. Spread Spectrum Techn. Appl., 3 (1998), 743. doi: 10.1109/ISSSTA.1998.722476. Google Scholar

[18]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481. doi: 10.1090/S0002-9947-1973-0335758-1. Google Scholar

[19]

C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach,, Ergodic Theory Dynam. Systems, 33 (2013), 168. doi: 10.1017/S0143385711000939. Google Scholar

[20]

R. May, Simple mathematical models with very complicated dynamics,, Chapter: The Theory of Chaotic Attractors, (2004), 85. doi: 10.1007/978-0-387-21830-4_7. Google Scholar

[21]

Ya. B. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory Dynam. Systems, 12 (1992), 123. doi: 10.1017/S0143385700006635. Google Scholar

[22]

Ya. B. Pesin and Ya. G. Sinai, Gibbs measures for partially hyperbolic attractors,, Ergodic Theory Dynam. Systems, 2 (1982), 417. doi: 10.1017/S014338570000170X. Google Scholar

[23]

C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos,, CRC Press, (1999). Google Scholar

[24]

F. Sánchez-Salas, Sinai-Ruelle-Bowen measures for piecewise hyperbolic transformations,, Divulg. Mat., 9 (2001), 35. Google Scholar

[25]

O. M. Sarig, Subexponential decay of corrlations,, Invent. Math., 150 (2002), 629. doi: 10.1007/s00222-002-0248-5. Google Scholar

[26]

Ya. G. Sinai, Gibbs measures in ergodic theory (Russian),, Uspehi Mat. Nauk, 27 (1972), 21. Google Scholar

[27]

L. S. Young, Bowen-Ruelle measures for certain piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 287 (1985), 41. doi: 10.1090/S0002-9947-1985-0766205-1. Google Scholar

[28]

L. S. Young, Ergodic theory of differentiable dynamical systems,, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), (1995), 293. Google Scholar

[29]

L. S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. of Math., 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[30]

L. S. Young, Recurrence times and rates of mixing,, Isr. J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[31]

L. S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733. doi: 10.1023/A:1019762724717. Google Scholar

show all references

References:
[1]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps,, J. Mod. Dyn., 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[2]

L. Barreira and Ya. Pesin, Lectures on Lyapunov exponents and smooth ergodic theory,, in Smooth Ergodic Theory and its Applications (Seattle, (1999), 3. doi: 10.1090/pspum/069/1858534. Google Scholar

[3]

L. Barreira and Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, Univ. Lect. Series, (2002). Google Scholar

[4]

M. Benedicks and L. Carleson, The dynamics of the Hénon map,, Ann. of Math., 133 (1991), 73. doi: 10.2307/2944326. Google Scholar

[5]

M. Benedicks and L. S. Young, Sinai-Bowen-Ruelle measure for certain Hénon maps,, Invent. Math., 112 (1993), 541. doi: 10.1007/BF01232446. Google Scholar

[6]

M. Di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer, Local analysis of C-bifurcation in $n$-dimensional piecewise-smooth dynamical systems,, Chaos Solitons Fractals, 10 (1999), 1881. doi: 10.1016/S0960-0779(98)00317-8. Google Scholar

[7]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lect. Notes Math., (1975). Google Scholar

[8]

A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. Probability and its Applications,, Birkhäuser, (1997). doi: 10.1007/978-1-4612-2024-4. Google Scholar

[9]

N. Chernov and R. Markarian, Chaotic Billiards,, Mathematical Surveys and Monographs, (2006). doi: 10.1090/surv/127. Google Scholar

[10]

P. Collet and Y. Levy, Ergodic properties of the Lozi mappings,, Commun. Math. Phys., 93 (1984), 461. doi: 10.1007/BF01212290. Google Scholar

[11]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777. doi: 10.1090/S0002-9947-08-04464-4. Google Scholar

[12]

Z. Elhadj, Lozi Mappings. Theory and Applications,, CRC Press, (2014). Google Scholar

[13]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992). Google Scholar

[14]

M. Jakobson and S. Newhouse, A two-dimensional version of the folklore theorem,, in Sinai's Moscow Seminar on Dynamical Systems, (1996), 89. Google Scholar

[15]

M. Jessa, Data encryption algorithms using one dimensional chaotic maps,, IEEE Int. Symp. on Circuits and Systems, (2000), 28. doi: 10.1109/ISCAS.2000.857194. Google Scholar

[16]

A. Katok, J. M. Strelcyn, A. Ledrappier and F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities,, Lect. Notes. Math., (1222). Google Scholar

[17]

T. Kohda, Y. Ookubo and K. Ishii, A color image communication using YIQ signals by spread spectrum techniques,, Proc. IEEE Int. Symp. Spread Spectrum Techn. Appl., 3 (1998), 743. doi: 10.1109/ISSSTA.1998.722476. Google Scholar

[18]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481. doi: 10.1090/S0002-9947-1973-0335758-1. Google Scholar

[19]

C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach,, Ergodic Theory Dynam. Systems, 33 (2013), 168. doi: 10.1017/S0143385711000939. Google Scholar

[20]

R. May, Simple mathematical models with very complicated dynamics,, Chapter: The Theory of Chaotic Attractors, (2004), 85. doi: 10.1007/978-0-387-21830-4_7. Google Scholar

[21]

Ya. B. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory Dynam. Systems, 12 (1992), 123. doi: 10.1017/S0143385700006635. Google Scholar

[22]

Ya. B. Pesin and Ya. G. Sinai, Gibbs measures for partially hyperbolic attractors,, Ergodic Theory Dynam. Systems, 2 (1982), 417. doi: 10.1017/S014338570000170X. Google Scholar

[23]

C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos,, CRC Press, (1999). Google Scholar

[24]

F. Sánchez-Salas, Sinai-Ruelle-Bowen measures for piecewise hyperbolic transformations,, Divulg. Mat., 9 (2001), 35. Google Scholar

[25]

O. M. Sarig, Subexponential decay of corrlations,, Invent. Math., 150 (2002), 629. doi: 10.1007/s00222-002-0248-5. Google Scholar

[26]

Ya. G. Sinai, Gibbs measures in ergodic theory (Russian),, Uspehi Mat. Nauk, 27 (1972), 21. Google Scholar

[27]

L. S. Young, Bowen-Ruelle measures for certain piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 287 (1985), 41. doi: 10.1090/S0002-9947-1985-0766205-1. Google Scholar

[28]

L. S. Young, Ergodic theory of differentiable dynamical systems,, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), (1995), 293. Google Scholar

[29]

L. S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. of Math., 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[30]

L. S. Young, Recurrence times and rates of mixing,, Isr. J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[31]

L. S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733. doi: 10.1023/A:1019762724717. Google Scholar

[1]

Maria Pires De Carvalho. Persistence of Bowen-Ruelle-Sinai measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 213-221. doi: 10.3934/dcds.2007.17.213

[2]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[3]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[4]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[5]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[6]

Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129

[7]

Luis Barreira, Yakov Pesin and Jorg Schmeling. On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture. Electronic Research Announcements, 1996, 2: 69-72.

[8]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[9]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[10]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[11]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[12]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[13]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[14]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[15]

Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91

[16]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[17]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[18]

Anass Belcaid, Mohammed Douimi, Abdelkader Fassi Fihri. Recursive reconstruction of piecewise constant signals by minimization of an energy function. Inverse Problems & Imaging, 2018, 12 (4) : 903-920. doi: 10.3934/ipi.2018038

[19]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[20]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]