• Previous Article
    Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion
  • DCDS Home
  • This Issue
  • Next Article
    Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces
May  2016, 36(5): 2887-2914. doi: 10.3934/dcds.2016.36.2887

Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China, China

Received  March 2015 Revised  July 2015 Published  October 2015

In this paper, we first present some conditions for bounding the fractal dimension of a random invariant set of a non-autonomous random dynamical system on a separable Banach space. Then we apply these conditions to prove the finiteness of fractal dimension of random attractor for stochastic damped wave equation with linear multiplicative white noise.
Citation: Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing Co., (1992).   Google Scholar

[3]

F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2591.  doi: 10.1142/S0218127410027246.  Google Scholar

[4]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[5]

T. Caraballo, J. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise,, Discrete Contin. Dynam. Systems, 6 (2000), 875.  doi: 10.3934/dcds.2000.6.875.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002).  doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[9]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems,, J. Dynam. Differential Equations, 10 (1998), 449.  doi: 10.1023/A:1022605313961.  Google Scholar

[10]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[11]

A. Debussche, On the finite dimensionality of random attractors,, Stochastic Anal. Appl., 15 (1997), 473.  doi: 10.1080/07362999708809490.  Google Scholar

[12]

A. Debussche, Hausdorff dimension of a random invariant set,, J. Math. Pures Appl., 77 (1998), 967.  doi: 10.1016/S0021-7824(99)80001-4.  Google Scholar

[13]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise,, Pacific J. Math., 216 (2004), 63.  doi: 10.2140/pjm.2004.216.63.  Google Scholar

[14]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise,, Internat. J. Math., 19 (2008), 421.  doi: 10.1142/S0129167X08004741.  Google Scholar

[15]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise,, Stoch. Anal. Appl., 24 (2006), 767.  doi: 10.1080/07362990600751860.  Google Scholar

[16]

H. Gao, M. J. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion,, SIAM J. Math. Anal., 46 (2014), 2281.  doi: 10.1137/130930662.  Google Scholar

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[18]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[19]

J. A. Langa, Finite-dimensional limiting dynamics of random dynamical systems,, Dyn. Syst., 18 (2003), 57.  doi: 10.1080/1468936031000080812.  Google Scholar

[20]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set,, J. Math. Pures Appl., 85 (2006), 269.  doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[21]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations,, J. Differential Equations, 244 (2008), 1.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[22]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Statist. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[23]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[24]

P. Walters, Introduction to Ergodic Theory,, Springer-Verlag, (2000).   Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete Contin. Dyn. Syst., 34 (2014), 269.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[27]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbN^3$,, Trans. Amer. Math. Soc., 363 (2011), 3639.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[28]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electron. J. Differential Equations, 2009 (2009), 1.   Google Scholar

[29]

G. Wang and Y. Tang, Fractal dimension of a random invariant set and applications,, J. Appl. Math., (2013).   Google Scholar

[30]

M. Yang, J. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise,, Nonlinear Anal. Real World Appl., 12 (2011), 464.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[31]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[32]

S. Zhou, F. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise,, SIAM J. Appl. Dyn. Syst., 4 (2005), 883.  doi: 10.1137/050623097.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing Co., (1992).   Google Scholar

[3]

F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2591.  doi: 10.1142/S0218127410027246.  Google Scholar

[4]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[5]

T. Caraballo, J. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise,, Discrete Contin. Dynam. Systems, 6 (2000), 875.  doi: 10.3934/dcds.2000.6.875.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002).  doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[9]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems,, J. Dynam. Differential Equations, 10 (1998), 449.  doi: 10.1023/A:1022605313961.  Google Scholar

[10]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[11]

A. Debussche, On the finite dimensionality of random attractors,, Stochastic Anal. Appl., 15 (1997), 473.  doi: 10.1080/07362999708809490.  Google Scholar

[12]

A. Debussche, Hausdorff dimension of a random invariant set,, J. Math. Pures Appl., 77 (1998), 967.  doi: 10.1016/S0021-7824(99)80001-4.  Google Scholar

[13]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise,, Pacific J. Math., 216 (2004), 63.  doi: 10.2140/pjm.2004.216.63.  Google Scholar

[14]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise,, Internat. J. Math., 19 (2008), 421.  doi: 10.1142/S0129167X08004741.  Google Scholar

[15]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise,, Stoch. Anal. Appl., 24 (2006), 767.  doi: 10.1080/07362990600751860.  Google Scholar

[16]

H. Gao, M. J. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion,, SIAM J. Math. Anal., 46 (2014), 2281.  doi: 10.1137/130930662.  Google Scholar

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[18]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[19]

J. A. Langa, Finite-dimensional limiting dynamics of random dynamical systems,, Dyn. Syst., 18 (2003), 57.  doi: 10.1080/1468936031000080812.  Google Scholar

[20]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set,, J. Math. Pures Appl., 85 (2006), 269.  doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[21]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations,, J. Differential Equations, 244 (2008), 1.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[22]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Statist. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[23]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[24]

P. Walters, Introduction to Ergodic Theory,, Springer-Verlag, (2000).   Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete Contin. Dyn. Syst., 34 (2014), 269.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[27]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbN^3$,, Trans. Amer. Math. Soc., 363 (2011), 3639.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[28]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electron. J. Differential Equations, 2009 (2009), 1.   Google Scholar

[29]

G. Wang and Y. Tang, Fractal dimension of a random invariant set and applications,, J. Appl. Math., (2013).   Google Scholar

[30]

M. Yang, J. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise,, Nonlinear Anal. Real World Appl., 12 (2011), 464.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[31]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[32]

S. Zhou, F. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise,, SIAM J. Appl. Dyn. Syst., 4 (2005), 883.  doi: 10.1137/050623097.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[18]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]