\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On uniformly recurrent motions of topological semigroup actions

Abstract Related Papers Cited by
  • Let G ↷ X be a topological action of a topological semigroup $G$ on a compact metric space $X$. We show in this paper that for any given point $x$ in $X$, the following two properties that both approximate to periodicity are equivalent to each other:
        $\bullet$ For any neighborhood $U$ of $x$, the return times set $\{g\in G : gx\in U\}$ is syndetic of Furstenburg in $G$.
        $\bullet$ Given any $\varepsilon>0$, there exists a finite subset $K$ of $G$ such that for each $g$ in $G$, the $\varepsilon$-neighborhood of the orbit-arc $K[gx]$ contains the entire orbit $G[x]$.
    This is a generalization of a classical theorem of Birkhoff for the case where $G=\mathbb{R}$ or $\mathbb{Z}$. In addition, a counterexample is constructed to this statement, while $X$ is merely a complete but not locally compact metric space.
    Mathematics Subject Classification: 37B05, 37B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Egawa, A characterization of regularly almost periodic minimal flows, Proc. Japan Acad. Ser. A, 71 (1995), 225-228.doi: 10.3792/pjaa.71.225.

    [2]

    H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981.

    [3]

    W. H. Gottschalk, Almost periodic points with respect to transformation semi-groups, Annals of Math., 47 (1946), 762-766.doi: 10.2307/1969233.

    [4]

    W. H. Gottschalk, A survey of minimal sets, Ann. Inst. Fourier, Grenoble, 14 (1964), 53-60.doi: 10.5802/aif.160.

    [5]

    W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Coll. Publ., Vol. 36, Amer. Math. Soc., Providence, R.I., 1955.

    [6]

    A. Miller and J. Rosenblatt, Characterizations of regular almost periodicity in compact minimal abelian flows, Trans. Amer. Math. Soc., 356 (2004), 4909-4929.doi: 10.1090/S0002-9947-04-03538-X.

    [7]

    D. Montgomery, Almost periodic transformation groups, Trans. Amer. Math. Soc., 42 (1937), 322-332.doi: 10.1090/S0002-9947-1937-1501924-0.

    [8]

    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, New Jersey 1960.

    [9]

    A. Weil, L'Integration Dans Les Groupes Topologiques et Ses Applications, Actualitiés scientifiques, No. 869, Paris, Hermann, 1938.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(383) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return