June  2016, 36(6): 2931-2944. doi: 10.3934/dcds.2016.36.2931

On uniformly recurrent motions of topological semigroup actions

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

Department of Mathematics, Nanjing University, Nanjing, 210093

Received  October 2014 Revised  October 2015 Published  December 2015

Let G ↷ X be a topological action of a topological semigroup $G$ on a compact metric space $X$. We show in this paper that for any given point $x$ in $X$, the following two properties that both approximate to periodicity are equivalent to each other:
    $\bullet$ For any neighborhood $U$ of $x$, the return times set $\{g\in G : gx\in U\}$ is syndetic of Furstenburg in $G$.
    $\bullet$ Given any $\varepsilon>0$, there exists a finite subset $K$ of $G$ such that for each $g$ in $G$, the $\varepsilon$-neighborhood of the orbit-arc $K[gx]$ contains the entire orbit $G[x]$.
This is a generalization of a classical theorem of Birkhoff for the case where $G=\mathbb{R}$ or $\mathbb{Z}$. In addition, a counterexample is constructed to this statement, while $X$ is merely a complete but not locally compact metric space.
Citation: Bin Chen, Xiongping Dai. On uniformly recurrent motions of topological semigroup actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2931-2944. doi: 10.3934/dcds.2016.36.2931
References:
[1]

J. Egawa, A characterization of regularly almost periodic minimal flows,, Proc. Japan Acad. Ser. A, 71 (1995), 225.  doi: 10.3792/pjaa.71.225.  Google Scholar

[2]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[3]

W. H. Gottschalk, Almost periodic points with respect to transformation semi-groups,, Annals of Math., 47 (1946), 762.  doi: 10.2307/1969233.  Google Scholar

[4]

W. H. Gottschalk, A survey of minimal sets,, Ann. Inst. Fourier, 14 (1964), 53.  doi: 10.5802/aif.160.  Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Coll. Publ., (1955).   Google Scholar

[6]

A. Miller and J. Rosenblatt, Characterizations of regular almost periodicity in compact minimal abelian flows,, Trans. Amer. Math. Soc., 356 (2004), 4909.  doi: 10.1090/S0002-9947-04-03538-X.  Google Scholar

[7]

D. Montgomery, Almost periodic transformation groups,, Trans. Amer. Math. Soc., 42 (1937), 322.  doi: 10.1090/S0002-9947-1937-1501924-0.  Google Scholar

[8]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).   Google Scholar

[9]

A. Weil, L'Integration Dans Les Groupes Topologiques et Ses Applications,, Actualitiés scientifiques, (1938).   Google Scholar

show all references

References:
[1]

J. Egawa, A characterization of regularly almost periodic minimal flows,, Proc. Japan Acad. Ser. A, 71 (1995), 225.  doi: 10.3792/pjaa.71.225.  Google Scholar

[2]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[3]

W. H. Gottschalk, Almost periodic points with respect to transformation semi-groups,, Annals of Math., 47 (1946), 762.  doi: 10.2307/1969233.  Google Scholar

[4]

W. H. Gottschalk, A survey of minimal sets,, Ann. Inst. Fourier, 14 (1964), 53.  doi: 10.5802/aif.160.  Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Coll. Publ., (1955).   Google Scholar

[6]

A. Miller and J. Rosenblatt, Characterizations of regular almost periodicity in compact minimal abelian flows,, Trans. Amer. Math. Soc., 356 (2004), 4909.  doi: 10.1090/S0002-9947-04-03538-X.  Google Scholar

[7]

D. Montgomery, Almost periodic transformation groups,, Trans. Amer. Math. Soc., 42 (1937), 322.  doi: 10.1090/S0002-9947-1937-1501924-0.  Google Scholar

[8]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).   Google Scholar

[9]

A. Weil, L'Integration Dans Les Groupes Topologiques et Ses Applications,, Actualitiés scientifiques, (1938).   Google Scholar

[1]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[2]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[5]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[8]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[9]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[13]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[16]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[17]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[20]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]