June  2016, 36(6): 2945-2967. doi: 10.3934/dcds.2016.36.2945

Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data

1. 

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China, China

Received  April 2015 Revised  September 2015 Published  December 2015

In this paper, we show the 3D nonhomogeneous incompressible MHD equations have a global solution provided that the initial data in critical Besov spaces $\dot{B}_{q,1}^{{3}/{q}}(\mathbb{R}^{3})\times\dot{B}_{p,1}^{-1+{3}/{p}}(\mathbb{R}^{3}) \times\dot{B}_{p,1}^{-1+{3}/{p}}(\mathbb{R}^{3})$ satisfy a nonlinear smallness condition for all $1< q\leq p<6$, ${1}/{q}-{1}/{p}<{1}/{3}$ if the initial density is near a positive constant. Moreover, this solution is unique under the restriction condition ${1}/{p}+{1}/{q}\geq{2}/{3}$. Motivated by Chemin and Gallagher [7], we also provide an example of initial data satisfying that nonlinear smallness condition, but the norms of $u_{0},b_{0}$ (even all their components) can be arbitrarily large in $\dot{B}_{p,1}^{-1+{3}/{p}}(\mathbb{R}^{3})$. In particular, when $b$ identically equals 0, our results improve that of Paicu and Zhang [28].
Citation: Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945
References:
[1]

H. Abidi and T. Hmidi, Résultats d'existence dans des espaces critiques pour le système de la MHD inhomogène,, (French) [Existence in critical spaces for the inhomogeneous MHD system], 14 (2007), 103.  doi: 10.5802/ambp.230.  Google Scholar

[2]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447.  doi: 10.1017/S0308210506001181.  Google Scholar

[3]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[5]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[6]

J. Y. Chemin, Perfect Incompressible Fluids,, The Clarendon Press, (1998).   Google Scholar

[7]

J. Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in $\mathbfR^3$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations,, Comm. Math. Phys., 275 (2007), 861.  doi: 10.1007/s00220-007-0319-y.  Google Scholar

[9]

Q. Chen, Z. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations,, Math. Methods Appl. Sci., 34 (2011), 94.  doi: 10.1002/mma.1338.  Google Scholar

[10]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases,, Comm. Partial Differential Equations, 26 (2001), 1183.  doi: 10.1081/PDE-100106132.  Google Scholar

[11]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311.  doi: 10.1017/S030821050000295X.  Google Scholar

[12]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar

[13]

B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics,, Differential Integral Equations, 11 (1998), 377.   Google Scholar

[14]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[15]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[16]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, Adv. Differential Equations, 2 (1997), 427.   Google Scholar

[17]

J. F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for The Magnetohydrodynamics of Liquid Metals,, Oxford University Press, (2006).  doi: 10.1093/acprof:oso/9780198566656.001.0001.  Google Scholar

[18]

G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity,, J. Funct. Anal., 267 (2014), 1488.  doi: 10.1016/j.jfa.2014.06.002.  Google Scholar

[19]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 238 (2007), 1.  doi: 10.1016/j.jde.2007.03.023.  Google Scholar

[20]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[21]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, J. Funct. Anal., 227 (2005), 113.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[22]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[23]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, $2^{nd}$ edition, (1999).   Google Scholar

[24]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case,, Comm. Pure Appl. Math., 67 (2014), 531.  doi: 10.1002/cpa.21506.  Google Scholar

[25]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996).   Google Scholar

[26]

R. Moreau, Magnetohydrodynamics,, Kluwer Academic Publishers Group, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

[27]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[28]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[29]

J. Peetre, New Thoughts on Besov Spaces,, Duke University, (1976).   Google Scholar

[30]

R. V. Polovin and V. P. Demutskiĭ, Fundamentals of Magnetohydrodynamics,, Consultants Bureau, (1990).   Google Scholar

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[32]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity,, J. Math. Phys., 56 (2015).  doi: 10.1063/1.4931467.  Google Scholar

[33]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

show all references

References:
[1]

H. Abidi and T. Hmidi, Résultats d'existence dans des espaces critiques pour le système de la MHD inhomogène,, (French) [Existence in critical spaces for the inhomogeneous MHD system], 14 (2007), 103.  doi: 10.5802/ambp.230.  Google Scholar

[2]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447.  doi: 10.1017/S0308210506001181.  Google Scholar

[3]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[5]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[6]

J. Y. Chemin, Perfect Incompressible Fluids,, The Clarendon Press, (1998).   Google Scholar

[7]

J. Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in $\mathbfR^3$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations,, Comm. Math. Phys., 275 (2007), 861.  doi: 10.1007/s00220-007-0319-y.  Google Scholar

[9]

Q. Chen, Z. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations,, Math. Methods Appl. Sci., 34 (2011), 94.  doi: 10.1002/mma.1338.  Google Scholar

[10]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases,, Comm. Partial Differential Equations, 26 (2001), 1183.  doi: 10.1081/PDE-100106132.  Google Scholar

[11]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311.  doi: 10.1017/S030821050000295X.  Google Scholar

[12]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar

[13]

B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics,, Differential Integral Equations, 11 (1998), 377.   Google Scholar

[14]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[15]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[16]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, Adv. Differential Equations, 2 (1997), 427.   Google Scholar

[17]

J. F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for The Magnetohydrodynamics of Liquid Metals,, Oxford University Press, (2006).  doi: 10.1093/acprof:oso/9780198566656.001.0001.  Google Scholar

[18]

G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity,, J. Funct. Anal., 267 (2014), 1488.  doi: 10.1016/j.jfa.2014.06.002.  Google Scholar

[19]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 238 (2007), 1.  doi: 10.1016/j.jde.2007.03.023.  Google Scholar

[20]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[21]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, J. Funct. Anal., 227 (2005), 113.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[22]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[23]

L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media,, $2^{nd}$ edition, (1999).   Google Scholar

[24]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case,, Comm. Pure Appl. Math., 67 (2014), 531.  doi: 10.1002/cpa.21506.  Google Scholar

[25]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996).   Google Scholar

[26]

R. Moreau, Magnetohydrodynamics,, Kluwer Academic Publishers Group, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

[27]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[28]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[29]

J. Peetre, New Thoughts on Besov Spaces,, Duke University, (1976).   Google Scholar

[30]

R. V. Polovin and V. P. Demutskiĭ, Fundamentals of Magnetohydrodynamics,, Consultants Bureau, (1990).   Google Scholar

[31]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[32]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity,, J. Math. Phys., 56 (2015).  doi: 10.1063/1.4931467.  Google Scholar

[33]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[1]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[2]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[3]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[4]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[5]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[6]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[9]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[10]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[11]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[12]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[13]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[14]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[15]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[16]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[17]

Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031

[18]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[19]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[20]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]