-
Previous Article
A degenerate edge bifurcation in the 1D linearized nonlinear Schrödinger equation
- DCDS Home
- This Issue
-
Next Article
Moving recurrent properties for the doubling map on the unit interval
A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law
1. | Department of Mathematics, University of Bari, Via E. Orabona 4, I--70125 Bari |
2. | Department of Mathematics, University of Bari, via E. Orabona 4, 70125 Bari, Italy |
References:
[1] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[2] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Analysis and Applications, 5 (2007), 1-27.
doi: 10.1142/S0219530507000857. |
[3] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Rosenau equation, submitted. |
[5] |
G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and Singularity formation for the Peakon b-Family equations, Acta Appl. Math., 122 (2012), 419-434.
doi: 10.1007/s10440-012-9753-8. |
[6] |
G. M. Coclite, H. Holden and K. H. Karlsen, Wellposedness of solutions of a parabolic-elliptic system, Discrete Cont. Dynam. Syst., 13 (2005), 659-682.
doi: 10.3934/dcds.2005.13.659. |
[7] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069.
doi: 10.1137/040616711. |
[8] |
G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963.
doi: 10.1016/j.jde.2008.04.014. |
[9] |
G. M. Coclite, K. H. Karlsen and N. H. Risebro, A convergent finite difference scheme for the Camassa-Holm equation with general $H^1$ initial data, SIAM J. Numer. Anal., 46 (2008), 1554-1579.
doi: 10.1137/060673242. |
[10] |
G. M. Coclite, K. H. Karlsen and N. H. Risebro, An explicit finite difference scheme for the Camassa-Holm equation, Adv. Differ. Equ., 13 (2008), 681-732. |
[11] |
G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272.
doi: 10.1080/03605300600781600. |
[12] |
G. M. Coclite and K. H. Karlsen, A note on the Camassa-Holm equation, J. Differential Equations, 259 (2015), 2158-2166.
doi: 10.1016/j.jde.2015.03.020. |
[13] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[14] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[15] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[16] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328. |
[17] |
A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.
doi: 10.1512/iumj.1998.47.1466. |
[18] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[19] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[20] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[21] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[22] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.
doi: 10.1007/s002200050801. |
[23] |
C. De Lellis, F. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quart. Appl. Math., 62 (2004), 687-700. |
[24] |
H.-H. Dai, Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods, Wave Motion, 28 (1998), 367-381.
doi: 10.1016/S0165-2125(98)00014-6. |
[25] |
H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[26] |
H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331-363.
doi: 10.1098/rspa.2000.0520. |
[27] |
A. A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, 14 (2001), 821-831. |
[28] |
H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 233 (2007), 448-484.
doi: 10.1016/j.jde.2006.09.007. |
[29] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.
doi: 10.1080/03605300601088674. |
[30] |
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.
doi: 10.3934/dcds.2009.24.1047. |
[31] |
S. Hwang, Singular limit problem of the Camassa-Holm type equation, J. Differential Equations, 235 (2007), 74-84.
doi: 10.1016/j.jde.2006.12.011. |
[32] |
S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations, 27 (2002), 1229-1254.
doi: 10.1081/PDE-120004900. |
[33] |
D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys., 14 (2007), 303-312.
doi: 10.2991/jnmp.2007.14.3.1. |
[34] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[35] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal. Ser. A: Theory Methods, 36 (1999), 212-230.
doi: 10.1016/S0362-546X(98)00012-1. |
[36] |
A. Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[37] |
F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322. |
[38] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., Ser. A: Theory Methods, 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[39] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
doi: 10.1080/03605308208820242. |
[40] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[41] |
Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844.
doi: 10.1081/PDE-120016129. |
show all references
References:
[1] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[2] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Analysis and Applications, 5 (2007), 1-27.
doi: 10.1142/S0219530507000857. |
[3] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Rosenau equation, submitted. |
[5] |
G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and Singularity formation for the Peakon b-Family equations, Acta Appl. Math., 122 (2012), 419-434.
doi: 10.1007/s10440-012-9753-8. |
[6] |
G. M. Coclite, H. Holden and K. H. Karlsen, Wellposedness of solutions of a parabolic-elliptic system, Discrete Cont. Dynam. Syst., 13 (2005), 659-682.
doi: 10.3934/dcds.2005.13.659. |
[7] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069.
doi: 10.1137/040616711. |
[8] |
G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963.
doi: 10.1016/j.jde.2008.04.014. |
[9] |
G. M. Coclite, K. H. Karlsen and N. H. Risebro, A convergent finite difference scheme for the Camassa-Holm equation with general $H^1$ initial data, SIAM J. Numer. Anal., 46 (2008), 1554-1579.
doi: 10.1137/060673242. |
[10] |
G. M. Coclite, K. H. Karlsen and N. H. Risebro, An explicit finite difference scheme for the Camassa-Holm equation, Adv. Differ. Equ., 13 (2008), 681-732. |
[11] |
G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272.
doi: 10.1080/03605300600781600. |
[12] |
G. M. Coclite and K. H. Karlsen, A note on the Camassa-Holm equation, J. Differential Equations, 259 (2015), 2158-2166.
doi: 10.1016/j.jde.2015.03.020. |
[13] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[14] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[15] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[16] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328. |
[17] |
A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.
doi: 10.1512/iumj.1998.47.1466. |
[18] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[19] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[20] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[21] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[22] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.
doi: 10.1007/s002200050801. |
[23] |
C. De Lellis, F. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quart. Appl. Math., 62 (2004), 687-700. |
[24] |
H.-H. Dai, Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods, Wave Motion, 28 (1998), 367-381.
doi: 10.1016/S0165-2125(98)00014-6. |
[25] |
H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[26] |
H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331-363.
doi: 10.1098/rspa.2000.0520. |
[27] |
A. A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, 14 (2001), 821-831. |
[28] |
H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 233 (2007), 448-484.
doi: 10.1016/j.jde.2006.09.007. |
[29] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.
doi: 10.1080/03605300601088674. |
[30] |
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.
doi: 10.3934/dcds.2009.24.1047. |
[31] |
S. Hwang, Singular limit problem of the Camassa-Holm type equation, J. Differential Equations, 235 (2007), 74-84.
doi: 10.1016/j.jde.2006.12.011. |
[32] |
S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations, 27 (2002), 1229-1254.
doi: 10.1081/PDE-120004900. |
[33] |
D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys., 14 (2007), 303-312.
doi: 10.2991/jnmp.2007.14.3.1. |
[34] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[35] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal. Ser. A: Theory Methods, 36 (1999), 212-230.
doi: 10.1016/S0362-546X(98)00012-1. |
[36] |
A. Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[37] |
F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322. |
[38] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., Ser. A: Theory Methods, 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[39] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
doi: 10.1080/03605308208820242. |
[40] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[41] |
Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844.
doi: 10.1081/PDE-120016129. |
[1] |
Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 |
[2] |
H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066 |
[3] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[4] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[5] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[6] |
Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047 |
[7] |
Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883 |
[8] |
Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871 |
[9] |
Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159 |
[10] |
Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090 |
[11] |
Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029 |
[12] |
Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230 |
[13] |
Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713 |
[14] |
Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305 |
[15] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
[16] |
Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181 |
[17] |
Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483 |
[18] |
Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304 |
[19] |
Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194 |
[20] |
David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]