June  2016, 36(6): 3011-3034. doi: 10.3934/dcds.2016.36.3011

Existence of solutions for a model of microwave heating

1. 

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia

2. 

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom

Received  June 2015 Revised  October 2015 Published  December 2015

This paper is concerned with a system of differential equations related to a circuit model for microwave heating, complemented by suitable initial and boundary conditions. A RLC circuit with a thermistor is representing the microwave heating process with temperature-induced modulations on the electric field. The unknowns of the PDE system are the absolute temperature in the body, the voltage across the capacitor and the electrostatic potential. Using techniques based on monotonicity arguments and sharp estimates, we can prove the existence of a weak solution to the initial-boundary value problem.
Citation: Pierluigi Colli, Luca Scarpa. Existence of solutions for a model of microwave heating. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3011-3034. doi: 10.3934/dcds.2016.36.3011
References:
[1]

S. Agrawal and G. A. Kriegsmann, A model for the microwave heating of a thin ceramic slab in a multimode cavity,, IMA J. Appl. Math., 78 (2013), 652. doi: 10.1093/imamat/hxt013. Google Scholar

[2]

S. N. Antonsev and M. Chipot, The thermistor problem: Existence, smoothness, uniqueness, blowup,, SIAM J. Math. Anal., 25 (1994), 1128. doi: 10.1137/S0036141092233482. Google Scholar

[3]

M. Badii, Existence of periodic solutions for the quasi-static thermoelastic thermistor problem,, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 1. doi: 10.1007/s00030-008-7017-0. Google Scholar

[4]

F. Brezzi and G. Gilardi, Chapters 1-3,, in Finite Element Handbook (eds. H. Kardestuncer and D. H. Norrie), (1987). Google Scholar

[5]

G. Cimatti, Remark on the number of solutions in the thermistor problem,, Matematiche (Catania), 66 (2011), 49. Google Scholar

[6]

G. Cimatti, Remarks on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 481. doi: 10.1017/S0308210509001826. Google Scholar

[7]

L. Consiglieri, A limit model for thermoelectric equations,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 57 (2011), 229. doi: 10.1007/s11565-011-0129-1. Google Scholar

[8]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345. doi: 10.1002/mma.1089. Google Scholar

[9]

C. García Reimbert, M. C. Jorge, A. A. Minzoni and C. A. Vargas, Temperature modulations in a circuit model of microwave heating. Applied-mathematical perspectives on microwave processing,, J. Engrg. Math., 44 (2002), 199. doi: 10.1023/A:1020824314529. Google Scholar

[10]

D. Hömberg, C. Meyer, J. Rehberg and W. Ring, Optimal control for the thermistor problem,, SIAM J. Control Optim., 48 (): 3449. doi: 10.1137/080736259. Google Scholar

[11]

D. Hömberg and E. Rocca, A model for resistance welding including phase transitions and Joule heating,, Math. Methods Appl. Sci., 34 (2011), 2077. doi: 10.1002/mma.1505. Google Scholar

[12]

K. L. Kuttler, M. Shillor and J. R. Fernández, Existence for the thermoviscoelastic thermistor problem,, Differ. Equ. Dyn. Syst., 17 (2009), 217. doi: 10.1007/s12591-009-0017-7. Google Scholar

[13]

V. S. Manoranjan, H.-M. Yin and R. Showalter, On two-phase Stefan problem arising from a microwave heating process,, Discrete Contin. Dyn. Syst., 15 (2006), 1155. doi: 10.3934/dcds.2006.15.1155. Google Scholar

[14]

L. Scarpa, A doubly nonlinear evolution problem related to a model for microwave heating,, Adv. Math. Sci. Appl., 24 (2014), 251. Google Scholar

[15]

P. Shi, M. Shillor and X. Xu, Existence of a solution to the Stefan problem with Joule's heating,, J. Differential Equations, 105 (1993), 239. doi: 10.1006/jdeq.1993.1089. Google Scholar

[16]

A. Sidi, R. Moulay and D. F. M. Torres, Optimal control of nonlocal thermistor equations,, Internat. J. Control, 85 (2012), 1789. doi: 10.1080/00207179.2012.703789. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[18]

W. Wei, H.-M. Yin and J. Tang, An optimal control problem for microwave heating,, Nonlinear Anal., 75 (2012), 2024. doi: 10.1016/j.na.2011.10.003. Google Scholar

[19]

H.-M. Yin, Regularity of weak solution to Maxwell's equations and applications to microwave heating,, J. Differential Equations, 200 (2004), 137. doi: 10.1016/j.jde.2004.01.010. Google Scholar

show all references

References:
[1]

S. Agrawal and G. A. Kriegsmann, A model for the microwave heating of a thin ceramic slab in a multimode cavity,, IMA J. Appl. Math., 78 (2013), 652. doi: 10.1093/imamat/hxt013. Google Scholar

[2]

S. N. Antonsev and M. Chipot, The thermistor problem: Existence, smoothness, uniqueness, blowup,, SIAM J. Math. Anal., 25 (1994), 1128. doi: 10.1137/S0036141092233482. Google Scholar

[3]

M. Badii, Existence of periodic solutions for the quasi-static thermoelastic thermistor problem,, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 1. doi: 10.1007/s00030-008-7017-0. Google Scholar

[4]

F. Brezzi and G. Gilardi, Chapters 1-3,, in Finite Element Handbook (eds. H. Kardestuncer and D. H. Norrie), (1987). Google Scholar

[5]

G. Cimatti, Remark on the number of solutions in the thermistor problem,, Matematiche (Catania), 66 (2011), 49. Google Scholar

[6]

G. Cimatti, Remarks on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 481. doi: 10.1017/S0308210509001826. Google Scholar

[7]

L. Consiglieri, A limit model for thermoelectric equations,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 57 (2011), 229. doi: 10.1007/s11565-011-0129-1. Google Scholar

[8]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345. doi: 10.1002/mma.1089. Google Scholar

[9]

C. García Reimbert, M. C. Jorge, A. A. Minzoni and C. A. Vargas, Temperature modulations in a circuit model of microwave heating. Applied-mathematical perspectives on microwave processing,, J. Engrg. Math., 44 (2002), 199. doi: 10.1023/A:1020824314529. Google Scholar

[10]

D. Hömberg, C. Meyer, J. Rehberg and W. Ring, Optimal control for the thermistor problem,, SIAM J. Control Optim., 48 (): 3449. doi: 10.1137/080736259. Google Scholar

[11]

D. Hömberg and E. Rocca, A model for resistance welding including phase transitions and Joule heating,, Math. Methods Appl. Sci., 34 (2011), 2077. doi: 10.1002/mma.1505. Google Scholar

[12]

K. L. Kuttler, M. Shillor and J. R. Fernández, Existence for the thermoviscoelastic thermistor problem,, Differ. Equ. Dyn. Syst., 17 (2009), 217. doi: 10.1007/s12591-009-0017-7. Google Scholar

[13]

V. S. Manoranjan, H.-M. Yin and R. Showalter, On two-phase Stefan problem arising from a microwave heating process,, Discrete Contin. Dyn. Syst., 15 (2006), 1155. doi: 10.3934/dcds.2006.15.1155. Google Scholar

[14]

L. Scarpa, A doubly nonlinear evolution problem related to a model for microwave heating,, Adv. Math. Sci. Appl., 24 (2014), 251. Google Scholar

[15]

P. Shi, M. Shillor and X. Xu, Existence of a solution to the Stefan problem with Joule's heating,, J. Differential Equations, 105 (1993), 239. doi: 10.1006/jdeq.1993.1089. Google Scholar

[16]

A. Sidi, R. Moulay and D. F. M. Torres, Optimal control of nonlocal thermistor equations,, Internat. J. Control, 85 (2012), 1789. doi: 10.1080/00207179.2012.703789. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[18]

W. Wei, H.-M. Yin and J. Tang, An optimal control problem for microwave heating,, Nonlinear Anal., 75 (2012), 2024. doi: 10.1016/j.na.2011.10.003. Google Scholar

[19]

H.-M. Yin, Regularity of weak solution to Maxwell's equations and applications to microwave heating,, J. Differential Equations, 200 (2004), 137. doi: 10.1016/j.jde.2004.01.010. Google Scholar

[1]

Yumei Liao, Wei Wei, Xianbing Luo. Existence of solution of a microwave heating model and associated optimal frequency control problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019045

[2]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[3]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[4]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[5]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[6]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[7]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[8]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[9]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[10]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[11]

Miroslav Bartušek. Existence of noncontinuable solutions of a system of differential equations. Conference Publications, 2009, 2009 (Special) : 54-59. doi: 10.3934/proc.2009.2009.54

[12]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[13]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[14]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[15]

Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019225

[16]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[17]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[18]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[19]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[20]

Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]