Citation: |
[1] |
A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory - I. Regular extremals, J. Dynamical and Control Systems, 3 (1997), 343-389.doi: 10.1007/BF02463256. |
[2] |
A. Agrachev and P. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Math. Ann., 360 (2014), 209-253.doi: 10.1007/s00208-014-1034-6. |
[3] |
A. Agrachev and P. Lee, Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry, J. Geom. Anal., 25 (2015), 512-535, arXiv:1105.2206.doi: 10.1007/s12220-013-9437-2. |
[4] |
A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004.doi: 10.1007/978-3-662-06404-7. |
[5] |
A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I, J. Dynamical and Control systems, 8 (2002), 93-140.doi: 10.1023/A:1013904801414. |
[6] |
D. Bakry and M. Émery, Diffusions hypercontractives. in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, (1985), 177-206.doi: 10.1007/BFb0075847. |
[7] |
F. Baudoin, M. Bonnefont and N. Garofalo, A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality, Math. Ann., 358 (2014), 833-860.doi: 10.1007/s00208-013-0961-y. |
[8] |
F. Baudoin and N. Garofalo, Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two, preprint, arXiv:0904.1623. |
[9] |
F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, preprint, arXiv:1101.3590. |
[10] |
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, 146pp. |
[11] |
P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 773-802.doi: 10.1016/j.anihpc.2007.07.005. |
[12] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhhäuser, 2004. |
[13] |
S. Chanillo and P. Yang, Isoperimetric inequalities & volume comparison theorems on CR manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., (5) 8 (2009), 279-307. |
[14] |
T. Coulhon, I. Holopainen and L. Saloff-Coste, Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems, Geom. Funct. Anal., 11 (2001), 1139-1191.doi: 10.1007/s00039-001-8227-3. |
[15] |
D. B. A. Epstein, Complex hyperbolic geometry, in Analytical and Geometric Aspects of Hyperbolic Space (ed. D.B.A. Epstein), London Mathematical Society Lecture Notes Series, 111 (1987), 93-111. |
[16] |
A. Figalli and L. Rifford, Mass Transportation on sub-Riemannian Manifolds, Geom. Funct. Anal., 20 (2010), 124-159.doi: 10.1007/s00039-010-0053-z. |
[17] |
K. Hughen, The Geometry of Sub-Riemannian Three-Manifolds, Ph.D. Dissertation, Duke University, 1995. |
[18] |
D. Jerison, The Poincaŕe inequality for vector fields satisfying the Hörmander condition, Duke Math. J., 53 (1986), 503-523.doi: 10.1215/S0012-7094-86-05329-9. |
[19] |
N. Juillet, Geometric inequalities and generalized ricci bounds in the heisenberg group, Int. Math. Res. Not. IMRN, (2009), 2347-2373.doi: 10.1093/imrn/rnp019. |
[20] |
P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view, J. Func. Anal., 265 (2013), 3163-3203.doi: 10.1016/j.jfa.2013.08.022. |
[21] |
P. W. Y. Lee and C. Li, Bishop and Laplacian comparison theorems on Sasakian manifolds, preprint, arXiv:1310.5322 (2013), 38pp. |
[22] |
P. W. Y. Lee, C. Li and I. Zelenko, Measure contraction properties of contact sub-Riemannian manifolds with symmetry, preprint, arXiv:1304.2658v1, 29 pp. |
[23] |
J. J. Levin, On the matrix Riccati equation, Proc. Amer. Math. Soc., 10 (1959), 519-524.doi: 10.1090/S0002-9939-1959-0108628-X. |
[24] |
C. Li and I. Zelenko, Parametrized curves in Lagrange Grassmannians, C.R. Acad. Sci. Paris, Ser. I, 345 (2007), 647-652.doi: 10.1016/j.crma.2007.10.034. |
[25] |
C. Li and I. Zelenko, Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differ. Geom. Appl., 27 (2009), 723-742.doi: 10.1016/j.difgeo.2009.07.002. |
[26] |
C.Li and I. Zelenko, Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries, J. Geom. Phys., 61 (2011), 781-807.doi: 10.1016/j.geomphys.2010.12.009. |
[27] |
J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903. |
[28] |
J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), 311-333.doi: 10.1016/j.jfa.2006.10.018. |
[29] |
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002. |
[30] |
S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82 (2007), 805-828.doi: 10.4171/CMH/110. |
[31] |
S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 211-249.doi: 10.1007/s00526-009-0227-4. |
[32] |
H. L. Royden, Comparison theorems for the matrix Riccati equation, Comm. Pure Appl. Math., 41 (1988), 739-746.doi: 10.1002/cpa.3160410512. |
[33] |
T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, 149. American Mathematical Society, Providence, RI, 1996. |
[34] |
K. T. Sturm, On the geometry of metric measure spaces, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8. |
[35] |
K. T. Sturm, On the geometry of metric measure spaces II, Acta Math., 196 (2006), 133-177.doi: 10.1007/s11511-006-0003-7. |
[36] |
N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifold, Kinokunya Book Store Co., Ltd., Kyoto, 1975. |
[37] |
S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1989), 349-379.doi: 10.1090/S0002-9947-1989-1000553-9. |
[38] |
C. Villani, Optimal Transport. Old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |
[39] |
J. Wang, Sub-Riemannian Heat Kernels on Model Spaces and Curvature-Dimension Inequalities on Contact Manifolds, Ph.D. Dissertation, Purdue University, 2014. |
[40] |
S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry, 13 (1978), 25-41. |