-
Previous Article
On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$
- DCDS Home
- This Issue
-
Next Article
Global existence and optimal decay rates of solutions for compressible Hall-MHD equations
From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence
1. | Ceremade UMR CNRS 7534 Universite Paris Dauphine, Place du Marechal DeLattre De Tassigny, 75775 PARIS CEDEX 16, France |
2. | Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland |
References:
[1] |
D. Bresch and B. Desjardins, Some diffusive capillary models of Korteweg type, C. R. Math. Acad. Sci. Paris, Section Mécanique, 332 (2004), 881-886. |
[2] |
D. Bresch and B. Desjardins, Existence of global weak solution for 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[3] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90.
doi: 10.1016/j.matpur.2006.11.001. |
[4] |
D. Bresch, B. Desjardins and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part II existence of global $\kappa$-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl. (9), 104 (2015), 801-836.
doi: 10.1016/j.matpur.2015.05.004. |
[5] |
D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part I well posedness for zero Mach number systems, J. Math. Pures Appl. (9), 104 (2015), 762-800.
doi: 10.1016/j.matpur.2015.05.003. |
[6] |
J. A. Carrillo, M. P. Gualdani and G. Toscani, Finite speed of propagation in porous media by mass transportation methods, C. R. Math. Acad. Sci. Paris, 338 (2004), 815-818.
doi: 10.1016/j.crma.2004.03.025. |
[7] |
J.-F. Coulombel, From gas dynamics to pressureless gas dynamics, Proc. Amer. Math. Soc., 134 (2006), 683-688.
doi: 10.1090/S0002-9939-05-08087-1. |
[8] |
R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup. (4), 35 (2002), 27-75.
doi: 10.1016/S0012-9593(01)01085-0. |
[9] |
B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279.
doi: 10.1098/rspa.1999.0403. |
[10] |
B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. (9), 78 (1999), 461-471.
doi: 10.1016/S0021-7824(99)00032-X. |
[11] |
M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 128 (2015), 106-121.
doi: 10.1016/j.na.2015.07.006. |
[12] |
T. Goudon and S. Junca, Vanishing pressure in gas dynamics equations, Z. angew. Math. Phys., 51 (2000), 143-148.
doi: 10.1007/PL00001502. |
[13] |
B. Haspot, Porous media equations, fast diffusions equations and the existence of global weak solution for the quasi-solutions of compressible Navier-Stokes equations, in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 14th International Conference on Hyperbolic Problems held in Padova, June 25-29, 2012, 2014, 667-674. |
[14] |
B. Haspot, From the highly compressible Navier-Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions, to appear in Journal of Mathematical Fluid Mechanics, HAL Id: hal-00770248, arXiv:1304.4502, 2013. |
[15] |
B. Haspot, Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D, HAL Id: hal-01082319, arXiv:1411.5503, 11 2014. |
[16] |
B. Haspot, New formulation of the compressible Navier-Stokes equations and parabolicity of the density, HAL Id: hal-01081580, arXiv:1411.5501, 11 2014. |
[17] |
B. Haspot, New entropy for Korteweg's system, existence of global weak solution and new blow-up criterion, HAL . Id: hal-00778811, 2013. |
[18] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.
doi: 10.1137/0151043. |
[19] |
S. Jiang, Z. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251.
doi: 10.4310/MAA.2005.v12.n3.a2. |
[20] |
Q. Jiu and Z. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330.
doi: 10.3934/krm.2008.1.313. |
[21] |
S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.
doi: 10.1002/cpa.3160340405. |
[22] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. |
[23] |
M. Lewicka and P. B. Mucha, On temporal asymptotics for the $p$th power viscous reactive gas, Nonlinear Anal., 57 (2004), 951-969.
doi: 10.1016/j.na.2003.12.001. |
[24] |
H.-L. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[25] |
P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627.
doi: 10.1016/S0021-7824(98)80139-6. |
[26] |
A. Mellet and A. F. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.
doi: 10.1080/03605300600857079. |
[27] |
A. Mellet and A. F. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 39 (2007/08), 1344-1365.
doi: 10.1137/060658199. |
[28] |
P. B. Mucha, Compressible Navier-Stokes system in 1-D, Math. Methods Appl. Sci., 24 (2001), 607-622.
doi: 10.1002/mma.232. |
[29] |
P. B. Mucha, M. Pokorný and E. Zatorska, Approximate solutions to model of two-component reactive flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 1079-1099.
doi: 10.3934/dcdss.2014.7.1079. |
[30] |
A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, arXiv:1501.06803, 03 2015. |
[31] |
A. F. Vasseur and C. Yu, Global weak solutions to compressible quantum Navier-Stokes equations with damping, arXiv:1503.06894, 03 2015. |
[32] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001. |
[33] |
J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, 2007. |
[34] |
S.-W. Vong, T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. II, J. Differential Equations, 192 (2003), 475-501.
doi: 10.1016/S0022-0396(03)00060-3. |
[35] |
T. Yang, Z.-a. Yao and C. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.
doi: 10.1081/PDE-100002385. |
[36] |
T. Yang and H. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 184 (2002), 163-184.
doi: 10.1006/jdeq.2001.4140. |
[37] |
T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.
doi: 10.1007/s00220-002-0703-6. |
[38] |
E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500.
doi: 10.1016/j.jde.2012.08.043. |
show all references
References:
[1] |
D. Bresch and B. Desjardins, Some diffusive capillary models of Korteweg type, C. R. Math. Acad. Sci. Paris, Section Mécanique, 332 (2004), 881-886. |
[2] |
D. Bresch and B. Desjardins, Existence of global weak solution for 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[3] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90.
doi: 10.1016/j.matpur.2006.11.001. |
[4] |
D. Bresch, B. Desjardins and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part II existence of global $\kappa$-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl. (9), 104 (2015), 801-836.
doi: 10.1016/j.matpur.2015.05.004. |
[5] |
D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part I well posedness for zero Mach number systems, J. Math. Pures Appl. (9), 104 (2015), 762-800.
doi: 10.1016/j.matpur.2015.05.003. |
[6] |
J. A. Carrillo, M. P. Gualdani and G. Toscani, Finite speed of propagation in porous media by mass transportation methods, C. R. Math. Acad. Sci. Paris, 338 (2004), 815-818.
doi: 10.1016/j.crma.2004.03.025. |
[7] |
J.-F. Coulombel, From gas dynamics to pressureless gas dynamics, Proc. Amer. Math. Soc., 134 (2006), 683-688.
doi: 10.1090/S0002-9939-05-08087-1. |
[8] |
R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup. (4), 35 (2002), 27-75.
doi: 10.1016/S0012-9593(01)01085-0. |
[9] |
B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279.
doi: 10.1098/rspa.1999.0403. |
[10] |
B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. (9), 78 (1999), 461-471.
doi: 10.1016/S0021-7824(99)00032-X. |
[11] |
M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 128 (2015), 106-121.
doi: 10.1016/j.na.2015.07.006. |
[12] |
T. Goudon and S. Junca, Vanishing pressure in gas dynamics equations, Z. angew. Math. Phys., 51 (2000), 143-148.
doi: 10.1007/PL00001502. |
[13] |
B. Haspot, Porous media equations, fast diffusions equations and the existence of global weak solution for the quasi-solutions of compressible Navier-Stokes equations, in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 14th International Conference on Hyperbolic Problems held in Padova, June 25-29, 2012, 2014, 667-674. |
[14] |
B. Haspot, From the highly compressible Navier-Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions, to appear in Journal of Mathematical Fluid Mechanics, HAL Id: hal-00770248, arXiv:1304.4502, 2013. |
[15] |
B. Haspot, Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D, HAL Id: hal-01082319, arXiv:1411.5503, 11 2014. |
[16] |
B. Haspot, New formulation of the compressible Navier-Stokes equations and parabolicity of the density, HAL Id: hal-01081580, arXiv:1411.5501, 11 2014. |
[17] |
B. Haspot, New entropy for Korteweg's system, existence of global weak solution and new blow-up criterion, HAL . Id: hal-00778811, 2013. |
[18] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.
doi: 10.1137/0151043. |
[19] |
S. Jiang, Z. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251.
doi: 10.4310/MAA.2005.v12.n3.a2. |
[20] |
Q. Jiu and Z. Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 1 (2008), 313-330.
doi: 10.3934/krm.2008.1.313. |
[21] |
S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.
doi: 10.1002/cpa.3160340405. |
[22] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. |
[23] |
M. Lewicka and P. B. Mucha, On temporal asymptotics for the $p$th power viscous reactive gas, Nonlinear Anal., 57 (2004), 951-969.
doi: 10.1016/j.na.2003.12.001. |
[24] |
H.-L. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[25] |
P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627.
doi: 10.1016/S0021-7824(98)80139-6. |
[26] |
A. Mellet and A. F. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.
doi: 10.1080/03605300600857079. |
[27] |
A. Mellet and A. F. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 39 (2007/08), 1344-1365.
doi: 10.1137/060658199. |
[28] |
P. B. Mucha, Compressible Navier-Stokes system in 1-D, Math. Methods Appl. Sci., 24 (2001), 607-622.
doi: 10.1002/mma.232. |
[29] |
P. B. Mucha, M. Pokorný and E. Zatorska, Approximate solutions to model of two-component reactive flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 1079-1099.
doi: 10.3934/dcdss.2014.7.1079. |
[30] |
A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, arXiv:1501.06803, 03 2015. |
[31] |
A. F. Vasseur and C. Yu, Global weak solutions to compressible quantum Navier-Stokes equations with damping, arXiv:1503.06894, 03 2015. |
[32] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001. |
[33] |
J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, 2007. |
[34] |
S.-W. Vong, T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. II, J. Differential Equations, 192 (2003), 475-501.
doi: 10.1016/S0022-0396(03)00060-3. |
[35] |
T. Yang, Z.-a. Yao and C. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.
doi: 10.1081/PDE-100002385. |
[36] |
T. Yang and H. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 184 (2002), 163-184.
doi: 10.1006/jdeq.2001.4140. |
[37] |
T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.
doi: 10.1007/s00220-002-0703-6. |
[38] |
E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500.
doi: 10.1016/j.jde.2012.08.043. |
[1] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[2] |
Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic and Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649 |
[3] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[4] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[5] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[6] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[7] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[8] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[9] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[10] |
Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719 |
[11] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
[12] |
Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069 |
[13] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[14] |
Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67 |
[15] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[16] |
Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 |
[17] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[18] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[19] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[20] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]