\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$

Abstract / Introduction Related Papers Cited by
  • We consider analytic cocycles on $\mathbb{T}^d\times U(n)$. We prove that, if a cocycle $(\alpha,A)$ with Diophantine $\alpha$ in an analytic class of radius $h$ can be conjugated to a constant cocycle $(\alpha,C)$ via some measurable conjugacy, then for almost all $C$, for any $h_*$ smaller than $h$, it can be conjugated to $(\alpha,C)$ in the analytic class of radius $h_*$, provided that $A$ is sufficiently close to some constant (the closeness depend only on $h-h_*$ and the Diophantine condition of $\alpha$).
    Mathematics Subject Classification: Primary: 37C15; Secondary: 37C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Avila, Global theory of one-frequency Schrödinger operators I: Stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity, Acta Mathematica, 215 (2015), 1-54.doi: 10.1007/s11511-015-0128-7.

    [2]

    A. Avila, Almost reducibility and absolute continuity I, arXiv:1006.0704, (2010).

    [3]

    A. Avila, B. Fayad and R. Krikorian, A KAM scheme for SL(2,R) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.doi: 10.1007/s00039-011-0135-6.

    [4]

    A. Avila and S. Jitomirskaya, Almost localization and almost reducibility, J. Eur. Math. Soc., 12 (2010), 93-131.doi: 10.4171/JEMS/191.

    [5]

    A. Avila and R. Krikorian, Reducibility or non-uniform hyperbolicity for quasiperiodic Schr\"odinger cocycles, Annals of Mathematics, 164 (2006), 911-940.doi: 10.4007/annals.2006.164.911.

    [6]

    N. Bogoljubov, J. Mitropolski and A. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer, New York, 1976.

    [7]

    C. Chavaudret, Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, Bull. Soc. Math. France, 141 (2013), 47-106.

    [8]

    C. Chavaudret, Reducibility of quasi-periodic cocycles in Linear Lie groups, Ergod. Theory and Dyn. Syst., 31 (2010), 741-769.

    [9]

    E. Dinaburg and Y. Sinai, The one-dimensional Schrödinger equation with a quasi-periodic potential, Funct. Anal. Appl., 9 (1975), 279-289.

    [10]

    H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., 146 (1992), 447-482.doi: 10.1007/BF02097013.

    [11]

    H. Eliasson, Almost reducibility of linear quasi-periodic systems, in Smooth Ergodic Theory and Its Applications (Seattle, WA., 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001, 679-705.doi: 10.1090/pspum/069/1858550.

    [12]

    B. Fayad and R. Krikorian, Rigidity results for quasiperiodic SL(2,R) cocycles, J. Mod. Dyn., 3 (2009), 479-510.doi: 10.3934/jmd.2009.3.479.

    [13]

    H. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, Journal of Dynamics and Differential Equations, 20 (2008), 831-866.doi: 10.1007/s10884-008-9113-6.

    [14]

    X. Hou and L. Jiao, Full-measure uniformly analytic reducibility for one-parameter family of cocycles on $U(n)$, work in progress.

    [15]

    X. Hou and G. Popov, Rigidity of the reducibility of Gevrey quasi-periodic cocycles on U(n), To appear in Bulletin de la SMF, arXiv:1307.2954, (2013).

    [16]

    X. Hou and J. You, The local rigidity of reducibility of analytic quasi-periodic cocycles on $U(N)$, Discrete Contin. Dyn. Syst., 24 (2009), 441-454.doi: 10.3934/dcds.2009.24.441.

    [17]

    X. Hou and J. You, The rigidity of reducibility of cocycles on $SO(N,\mathbbR)$, Nonlinearity, 21 (2008), 2317-2330.doi: 10.1088/0951-7715/21/10/006.

    [18]

    X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Inventiones Mathematicae, 190 (2012), 209-260.doi: 10.1007/s00222-012-0379-2.

    [19]

    R. Johnson and J. Moser, The rotation number for almost periodic potentials, J. Differ. Equ., 84 (1982), 403-438.doi: 10.1007/BF01208484.

    [20]

    A. Jorba and C. Simó, On the reducibility of linear differential equations with quasi-periodic coefficients, J. Differ. Equ., 98 (1992), 111-124.doi: 10.1016/0022-0396(92)90107-X.

    [21]

    N. Karaliolios, Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups, arXiv:1407.4799, (2014), 269-326.

    [22]

    R. Krikorian, Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans les groupes compacts, Ann. Sci. éc. Norm. Super., 32 (1999), 187-240.doi: 10.1016/S0012-9593(99)80014-7.

    [23]

    R. Krikorian, Réductibilité Des Systèmes Produits-croisés à Valeurs Das Des Groupes Compacts, Astérisque, 1999.

    [24]

    R. Krikorian, Global density of reducible quasi-periodic cocycles on $\mathbbT^1\times SU(2)$, Annals of Mathematics, 154 (2001), 269-326.doi: 10.2307/3062098.

    [25]

    R. Krikorian, Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on $\mathbbT\times SL(2,\mathbbR)$, arXiv:math/0402333, (2004).

    [26]

    J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasiperiodic potentials, Comment. Math. Helv., 59 (1984), 39-85.doi: 10.1007/BF02566337.

    [27]

    H. Rüssmann, On the one dimensional schrödinger equation with a quasi-periodic potential, Ann. N.Y. Acad. Sci., 357 (1980), 90-107.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return