• Previous Article
    Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients
  • DCDS Home
  • This Issue
  • Next Article
    Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems
June  2016, 36(6): 3227-3250. doi: 10.3934/dcds.2016.36.3227

Homotopy invariants methods in the global dynamics of strongly damped wave equation

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń

Received  May 2015 Revised  October 2015 Published  December 2015

We are interested in the following differential equation $\ddot u(t) = -A u(t) - c A \dot u(t) + \lambda u(t) + F(u(t))$ where $c > 0$ is a damping factor, $A$ is a sectorial operator and $F$ is a continuous map. We consider the situation where the equation is at resonance at infinity, which means that $\lambda$ is an eigenvalue of $A$ and $F$ is a bounded map. We provide geometrical conditions for the nonlinearity $F$ and determine the Conley index of the set $K_\infty$, that is the union of the bounded orbits of this equation.
Citation: Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227
References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875. doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 15-28.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

J. Arrieta, R. Pardo and A. Rodriguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), 2055-2080. doi: 10.1016/j.jde.2008.09.002.  Google Scholar

[5]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[6]

H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 225-326.  Google Scholar

[7]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310. doi: 10.2140/pjm.2002.207.287.  Google Scholar

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[9]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[10]

A. Ćwiszewski, Periodic solutions of damped hyperbolic equations at resonance: A translation along trajectories approach, Differential Integral Equations, 24 (2011), 767-786.  Google Scholar

[11]

A. Ćwiszewski and P. Kokocki, Krasnosel\cprime skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605.  Google Scholar

[12]

A. Ćwiszewski and K. P. Rybakowski, Singular dynamics of strongly damped beam equation, J. Differential Equations, 247 (2009), 3202-3233. doi: 10.1016/j.jde.2009.09.006.  Google Scholar

[13]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.  Google Scholar

[14]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.  Google Scholar

[15]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[16]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981.  Google Scholar

[18]

P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance: Existence of multiple solutions, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 527-537.  Google Scholar

[19]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, American Mathematical Society, Providence, RI, 1957.  Google Scholar

[20]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278. doi: 10.1016/j.na.2013.02.030.  Google Scholar

[21]

P. Kokocki, Effect of resonance on the existence of periodic solutions for strongly damped wave equation, Nonlinear Analysis: Theory, Methods and Applications, 125 (2015), 167-200. doi: 10.1016/j.na.2015.05.012.  Google Scholar

[22]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609-623.  Google Scholar

[23]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.  Google Scholar

[24]

A. C. Lazer and P. J. McKenna, Open problems in nonlinear ordinary boundary value problems arising from the study of large-amplitude periodic oscillations in suspension bridges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 349-358.  Google Scholar

[25]

P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Differential Equations, 48 (1983), 334-349. doi: 10.1016/0022-0396(83)90098-0.  Google Scholar

[26]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., 58 (1998), 733-747. doi: 10.1112/S0024610798006784.  Google Scholar

[27]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096. doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382. doi: 10.1090/S0002-9947-1982-0637695-7.  Google Scholar

[30]

K. P. Rybakowski, Nontrivial solutions of elliptic boundary value problems with resonance at zero, Ann. Mat. Pura Appl., 139 (1985), 237-277. doi: 10.1007/BF01766857.  Google Scholar

[31]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-72833-4.  Google Scholar

[32]

K. P. Rybakowski, Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Differential Equations, 51 (1984), 182-212. doi: 10.1016/0022-0396(84)90107-4.  Google Scholar

[33]

D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1-41. doi: 10.1090/S0002-9947-1985-0797044-3.  Google Scholar

[34]

M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal., 14 (1990), 889-903. doi: 10.1016/0362-546X(90)90027-E.  Google Scholar

[35]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1983.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.  Google Scholar

[37]

J. Valdo and A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal., 5 (1981), 57-60. doi: 10.1016/0362-546X(81)90070-5.  Google Scholar

show all references

References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875. doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 15-28.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

J. Arrieta, R. Pardo and A. Rodriguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), 2055-2080. doi: 10.1016/j.jde.2008.09.002.  Google Scholar

[5]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[6]

H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 225-326.  Google Scholar

[7]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310. doi: 10.2140/pjm.2002.207.287.  Google Scholar

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.  Google Scholar

[9]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[10]

A. Ćwiszewski, Periodic solutions of damped hyperbolic equations at resonance: A translation along trajectories approach, Differential Integral Equations, 24 (2011), 767-786.  Google Scholar

[11]

A. Ćwiszewski and P. Kokocki, Krasnosel\cprime skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605.  Google Scholar

[12]

A. Ćwiszewski and K. P. Rybakowski, Singular dynamics of strongly damped beam equation, J. Differential Equations, 247 (2009), 3202-3233. doi: 10.1016/j.jde.2009.09.006.  Google Scholar

[13]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.  Google Scholar

[14]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.  Google Scholar

[15]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[16]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981.  Google Scholar

[18]

P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance: Existence of multiple solutions, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 527-537.  Google Scholar

[19]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, American Mathematical Society, Providence, RI, 1957.  Google Scholar

[20]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278. doi: 10.1016/j.na.2013.02.030.  Google Scholar

[21]

P. Kokocki, Effect of resonance on the existence of periodic solutions for strongly damped wave equation, Nonlinear Analysis: Theory, Methods and Applications, 125 (2015), 167-200. doi: 10.1016/j.na.2015.05.012.  Google Scholar

[22]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609-623.  Google Scholar

[23]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.  Google Scholar

[24]

A. C. Lazer and P. J. McKenna, Open problems in nonlinear ordinary boundary value problems arising from the study of large-amplitude periodic oscillations in suspension bridges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 349-358.  Google Scholar

[25]

P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Differential Equations, 48 (1983), 334-349. doi: 10.1016/0022-0396(83)90098-0.  Google Scholar

[26]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., 58 (1998), 733-747. doi: 10.1112/S0024610798006784.  Google Scholar

[27]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096. doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382. doi: 10.1090/S0002-9947-1982-0637695-7.  Google Scholar

[30]

K. P. Rybakowski, Nontrivial solutions of elliptic boundary value problems with resonance at zero, Ann. Mat. Pura Appl., 139 (1985), 237-277. doi: 10.1007/BF01766857.  Google Scholar

[31]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-72833-4.  Google Scholar

[32]

K. P. Rybakowski, Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Differential Equations, 51 (1984), 182-212. doi: 10.1016/0022-0396(84)90107-4.  Google Scholar

[33]

D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1-41. doi: 10.1090/S0002-9947-1985-0797044-3.  Google Scholar

[34]

M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal., 14 (1990), 889-903. doi: 10.1016/0362-546X(90)90027-E.  Google Scholar

[35]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1983.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.  Google Scholar

[37]

J. Valdo and A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal., 5 (1981), 57-60. doi: 10.1016/0362-546X(81)90070-5.  Google Scholar

[1]

Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617

[2]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[3]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[4]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[5]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[6]

Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056

[7]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[8]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[9]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[10]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[11]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[12]

Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511

[13]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[14]

Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613

[15]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[16]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[17]

Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124

[18]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[19]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[20]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]