Advanced Search
Article Contents
Article Contents

Homotopy invariants methods in the global dynamics of strongly damped wave equation

Abstract Related Papers Cited by
  • We are interested in the following differential equation $\ddot u(t) = -A u(t) - c A \dot u(t) + \lambda u(t) + F(u(t))$ where $c > 0$ is a damping factor, $A$ is a sectorial operator and $F$ is a continuous map. We consider the situation where the equation is at resonance at infinity, which means that $\lambda$ is an eigenvalue of $A$ and $F$ is a bounded map. We provide geometrical conditions for the nonlinearity $F$ and determine the Conley index of the set $K_\infty$, that is the union of the bounded orbits of this equation.
    Mathematics Subject Classification: Primary: 37B30, 47J35; Secondary: 35B34.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.doi: 10.1090/S0002-9947-1991-1010407-9.


    A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 15-28.


    H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995.doi: 10.1007/978-3-0348-9221-6.


    J. Arrieta, R. Pardo and A. Rodriguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), 2055-2080.doi: 10.1016/j.jde.2008.09.002.


    P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.doi: 10.1016/0362-546X(83)90115-3.


    H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 225-326.


    A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.doi: 10.2140/pjm.2002.207.287.


    J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511526404.


    C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978.


    A. Ćwiszewski, Periodic solutions of damped hyperbolic equations at resonance: A translation along trajectories approach, Differential Integral Equations, 24 (2011), 767-786.


    A. Ćwiszewski and P. Kokocki, Krasnosel\cprime skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628.doi: 10.3934/dcds.2008.22.605.


    A. Ćwiszewski and K. P. Rybakowski, Singular dynamics of strongly damped beam equation, J. Differential Equations, 247 (2009), 3202-3233.doi: 10.1016/j.jde.2009.09.006.


    D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.


    K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.


    J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.


    J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 2002.doi: 10.1007/b100032.


    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981.


    P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance: Existence of multiple solutions, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 527-537.


    E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, American Mathematical Society, Providence, RI, 1957.


    P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278.doi: 10.1016/j.na.2013.02.030.


    P. Kokocki, Effect of resonance on the existence of periodic solutions for strongly damped wave equation, Nonlinear Analysis: Theory, Methods and Applications, 125 (2015), 167-200.doi: 10.1016/j.na.2015.05.012.


    E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609-623.


    A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.doi: 10.1137/1032120.


    A. C. Lazer and P. J. McKenna, Open problems in nonlinear ordinary boundary value problems arising from the study of large-amplitude periodic oscillations in suspension bridges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 349-358.


    P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Differential Equations, 48 (1983), 334-349.doi: 10.1016/0022-0396(83)90098-0.


    J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., 58 (1998), 733-747.doi: 10.1112/S0024610798006784.


    R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.doi: 10.1090/S0002-9939-96-03457-0.


    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.doi: 10.1007/978-1-4612-5561-1.


    K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382.doi: 10.1090/S0002-9947-1982-0637695-7.


    K. P. Rybakowski, Nontrivial solutions of elliptic boundary value problems with resonance at zero, Ann. Mat. Pura Appl., 139 (1985), 237-277.doi: 10.1007/BF01766857.


    K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987.doi: 10.1007/978-3-642-72833-4.


    K. P. Rybakowski, Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Differential Equations, 51 (1984), 182-212.doi: 10.1016/0022-0396(84)90107-4.


    D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1-41.doi: 10.1090/S0002-9947-1985-0797044-3.


    M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal., 14 (1990), 889-903.doi: 10.1016/0362-546X(90)90027-E.


    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1983.


    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.


    J. Valdo and A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal., 5 (1981), 57-60.doi: 10.1016/0362-546X(81)90070-5.

  • 加载中

Article Metrics

HTML views() PDF downloads(53) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint