\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps

Abstract Related Papers Cited by
  • We give three families of parabolic rational maps and show that every Cantor set of circles as the Julia set of a non-hyperbolic rational map must be quasisymmetrically equivalent to the Julia set of one map in these families for suitable parameters. Combining a result obtained before, we give a complete classification of the Cantor circles Julia sets in the sense of quasisymmetric equivalence. Moreover, we study the regularity of the components of the Cantor circles Julia sets and establish a sufficient and necessary condition when a component of a Cantor circles Julia set is a quasicircle.
    Mathematics Subject Classification: Primary: 37F45; Secondary: 37F20, 37F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-4422-6.

    [2]

    M. Bonk, Uniformization of Sierpiński carpets in the plane, Invent. Math., 186 (2011), 559-665.doi: 10.1007/s00222-011-0325-8.

    [3]

    M. Bonk, M. Lyubich and S. Merenkov, Quasisymmetries of Sierpiński carpet Julia sets, preprint, arXiv:1403.0392.

    [4]

    M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, (French) [Hyperbolic buildings, conformal dimension and Mostow rigidity], Geom. Funct. Anal., 7 (1997), 245-268.doi: 10.1007/PL00001619.

    [5]

    M. Bourdon and H. Pajot, Quasi-conformal geometry and hyperbolic geometry, in Rigidity in Dynamics and Geometry, Springer, Berlin, 2002, 1-17.

    [6]

    G. Cui, Dynamics of rational maps, topology, deformation and bifurcation, Preprint, May, 2002 (early version: Geometrically finite rational maps with given combinatorics, 1997).

    [7]

    R. L. Devaney, D. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J., 54 (2005), 1621-1634.doi: 10.1512/iumj.2005.54.2615.

    [8]

    A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Éc Norm. Sup., 18 (1985), 287-343.

    [9]

    M. Gromov, Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263.doi: 10.1007/978-1-4613-9586-7_3.

    [10]

    P. Haïssinsky, Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, Astérisque, 326 (2009), 321-362.

    [11]

    P. Haïssinsky and K. Pilgrim, Quasisymmetrically inequivalent hyperbolic Julia sets, Rev. Mat. Iberoam., 28 (2012), 1025-1034.doi: 10.4171/RMI/701.

    [12]

    J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001.doi: 10.1007/978-1-4613-0131-8.

    [13]

    M. Kapovich and B. Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. Éc Norm. Sup., 33 (2000), 647-669.doi: 10.1016/S0012-9593(00)01049-1.

    [14]

    B. Kleiner, The asymptotic geometry of negatively curved spaces: Uniformization, geometrization and rigidity, in International Congress of Mathematicians, II, Eur. Math. Soc., Zürich, 2006, 743-768.

    [15]

    O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

    [16]

    C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli I, Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, 31-60.doi: 10.1007/978-1-4613-9602-4_3.

    [17]

    J. Milnor, Dynamics in One Complex Variable: Third Edition, Annals of Mathematics Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006.

    [18]

    K. Pilgrim and L. Tan, Rational maps with disconnected Julia sets, Astérisque, 261 (2000), 349-383.

    [19]

    W. Qiu, X. Wang and Y. Yin, Dynamics of McMullen maps, Adv. Math., 229 (2012), 2525-2577.doi: 10.1016/j.aim.2011.12.026.

    [20]

    W. Qiu, F. Yang and Y. Yin, Rational maps whose Julia sets are Cantor circles, Ergod. Th. & Dynam. Sys., 35 (2015), 499-529.doi: 10.1017/etds.2013.53.

    [21]

    N. Steinmetz, On the dynamics of the McMullen family $R(z)=z^m+\lambda/z^l$, Conform. Geom. Dyn., 10 (2006), 159-183.doi: 10.1090/S1088-4173-06-00149-4.

    [22]

    L. Tan and Y. Yin, Local connectivity of the Julia sets for geometrically finite rational maps, Sci. China Ser. A, 39 (1996), 39-47.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return