Citation: |
[1] |
C. Bonatti, S. Crovisier and K. Shinohara, The $C^{1+\alpha}$ hypothesis in Pesin theory revisited, Journal of Modern Dynanics, 7 (2013), 605-618.doi: 10.3934/jmd.2013.7.605. |
[2] |
C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, 102, Springer-Verlag, Berlin, 2005. |
[3] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.doi: 10.1007/BF02810585. |
[4] |
J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity, J. Mod. Dyn., 7 (2013), 527-552.doi: 10.3934/jmd.2013.7.527. |
[5] |
T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov, Mathematische Zeitschrift, 278 (2014), 149-168.doi: 10.1007/s00209-014-1310-x. |
[6] |
K. Gelfert, Somersaults on unstable islands, preprint, arXiv:1411.7424v1. |
[7] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, New York, 1977. |
[8] |
Y. Hua, R. Saghin and Z. Xia, Topological entropy and partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 28 (2008), 843-862.doi: 10.1017/S0143385707000405. |
[9] |
A. Katok, A conjecture about entropy, AMS. Transl, 133 (1986), 91-107. |
[10] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. |
[11] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187. |
[12] |
R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396.doi: 10.1016/0040-9383(78)90005-8. |
[13] |
R. Mañé, IntroduÇão à Teoria Ergódica, Projeto Euclides [Euclid Project], Vol. 14, IMPA, Rio de Janeiro, 1983. |
[14] |
M. Misiurewicz and F. Przytycki, Entropy conjecture for tori, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25 (1977), 575-578. |
[15] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, Ergodic Theory Dynam. Systems, 32 (2012), 825-839.doi: 10.1017/S0143385711000757. |
[16] |
D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327.doi: 10.1016/0040-9383(75)90016-6. |
[17] |
R. Saghin, Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 34 (2014), 3789-3801.doi: 10.3934/dcds.2014.34.3789. |
[18] |
M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc., 80 (1974), 27-41.doi: 10.1090/S0002-9904-1974-13344-6. |
[19] |
R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.doi: 10.1090/S0002-9939-2011-11040-2. |
[20] |
P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.doi: 10.1016/0040-9383(70)90051-0. |
[21] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[22] |
Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.doi: 10.1007/BF02766215. |