\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hyperbolic sets and entropy at the homological level

Abstract / Introduction Related Papers Cited by
  • The aim of this work is to study a kind of refinement of the entropy conjecture, in the context of partially hyperbolic diffeomorphism with one dimensional central direction, of $d$-dimensional torus. We start by establishing a connection between the unstable index of hyperbolic sets and the index at algebraic level. Two examples are given which might shed light on which are the good questions in the higher dimensional center case.
    Mathematics Subject Classification: Primary: 37D25; Secondary: 37B40, 37D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bonatti, S. Crovisier and K. Shinohara, The $C^{1+\alpha}$ hypothesis in Pesin theory revisited, Journal of Modern Dynanics, 7 (2013), 605-618.doi: 10.3934/jmd.2013.7.605.

    [2]

    C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, 102, Springer-Verlag, Berlin, 2005.

    [3]

    C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.doi: 10.1007/BF02810585.

    [4]

    J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity, J. Mod. Dyn., 7 (2013), 527-552.doi: 10.3934/jmd.2013.7.527.

    [5]

    T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov, Mathematische Zeitschrift, 278 (2014), 149-168.doi: 10.1007/s00209-014-1310-x.

    [6]

    K. Gelfert, Somersaults on unstable islands, preprint, arXiv:1411.7424v1.

    [7]

    M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, New York, 1977.

    [8]

    Y. Hua, R. Saghin and Z. Xia, Topological entropy and partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 28 (2008), 843-862.doi: 10.1017/S0143385707000405.

    [9]

    A. Katok, A conjecture about entropy, AMS. Transl, 133 (1986), 91-107.

    [10]

    A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

    [11]

    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187.

    [12]

    R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396.doi: 10.1016/0040-9383(78)90005-8.

    [13]

    R. Mañé, IntroduÇão à Teoria Ergódica, Projeto Euclides [Euclid Project], Vol. 14, IMPA, Rio de Janeiro, 1983.

    [14]

    M. Misiurewicz and F. Przytycki, Entropy conjecture for tori, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25 (1977), 575-578.

    [15]

    F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, Ergodic Theory Dynam. Systems, 32 (2012), 825-839.doi: 10.1017/S0143385711000757.

    [16]

    D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327.doi: 10.1016/0040-9383(75)90016-6.

    [17]

    R. Saghin, Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 34 (2014), 3789-3801.doi: 10.3934/dcds.2014.34.3789.

    [18]

    M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc., 80 (1974), 27-41.doi: 10.1090/S0002-9904-1974-13344-6.

    [19]

    R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.doi: 10.1090/S0002-9939-2011-11040-2.

    [20]

    P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.doi: 10.1016/0040-9383(70)90051-0.

    [21]

    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

    [22]

    Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.doi: 10.1007/BF02766215.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(259) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return