Citation: |
[1] |
H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis (Translated from the German by G. Metzen), de Gruyter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990.doi: 10.1515/9783110853698. |
[2] |
P. Brunovský, A. Erdélyi and H.-O. Walther, On a model of a currency exchange rate - local stability and periodic solutions, J. Dynam. Differential Equations, 16 (2004), 393-432.doi: 10.1007/s10884-004-4285-1. |
[3] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4206-2. |
[4] |
P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology, preprint, arXiv:1411.3097v1. |
[5] |
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delay, in Hand. Differ. Equ.: Ordinary Differential Equations, 3, Elsevier/North-Holland, Amsterdam, 2006, 435-545.doi: 10.1016/S1874-5725(06)80009-X. |
[6] |
T. Krisztin, A local unstable manifold for differential equations with state-dependent delay, Discrete Contin. Dyn. Syst., 9 (2003), 993-1028.doi: 10.3934/dcds.2003.9.993. |
[7] |
T. Krisztin, $C^{1}$-smoothness of center manifolds for differential equations with state-dependent delay, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner et al.), Fields Inst. Commun., 48, Amer. Math. Soc., Providence, 2006, 213-226. |
[8] |
V. A. Pliss, A reduction principle in the theory of stability of motion (Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 1297-1324. |
[9] |
R. Qesmi and H.-O. Walther, Center-stable manifolds for differential equations with state-dependent delays, Discrete Contin. Dyn. Syst., 23 (2009), 1009-1033.doi: 10.3934/dcds.2009.23.1009. |
[10] |
E. Stumpf, On a differential equation with state-dependent delay: A global center-unstable manifold bordered by a periodic orbit, Doctoral dissertation, University of Hamburg, 2010. Available from: http://ediss.sub.uni-hamburg.de/volltexte/2010/4603. |
[11] |
E. Stumpf, The existence and $C^1$-smoothness of local center-unstable manifolds for differential equations with state-dependent delay, Rostock. Math. Kolloq., 66 (2011), 3-44. Available from http://www.math.uni-rostock.de/math/pub/romako/romako66.html. |
[12] |
E. Stumpf, On a differential equation with state-dependent delay: A center-unstable manifold connecting an equilibrium and a periodic orbit, J. Dynam. Differential Equations, 24 (2012), 197-248.doi: 10.1007/s10884-012-9245-6. |
[13] |
E. Stumpf, Attraction property of local center-unstable manifolds for differential equations with state-dependent delay, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 1-45. Available from: http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3010. |
[14] |
A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, in Dynamics Reported, A series in dynamical systems and their applications, Vol. 2, Wiley, Chichester, 1989, 89-169. |
[15] |
H.-O. Walther, The solution manifold and $C^{1}$-smoothness for differential equations with state-dependent delay, J. of Differential Equations, 195 (2003), 46-65.doi: 10.1016/j.jde.2003.07.001. |
[16] |
H.-O. Walther, Smoothness properties of semiflows for differential equations with state-dependent delays, J. Math. Sci. (N.Y.), 124 (2004), 5193-5207.doi: 10.1023/B:JOTH.0000047253.23098.12. |