June  2016, 36(6): 3445-3461. doi: 10.3934/dcds.2016.36.3445

Local stability analysis of differential equations with state-dependent delay

1. 

Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

Received  February 2015 Revised  September 2015 Published  December 2015

In the present article, we discuss some aspects of the local stability analysis for a class of abstract functional differential equations. This is done under smoothness assumptions which are often satisfied in the presence of a state-dependent delay. Apart from recapitulating the two classical principles of linearized stability and instability, we deduce the analogon of the Pliss reduction principle for the class of differential equations under consideration. This reduction principle enables to determine the local stability properties of a solution in the situation where the linearization does not have any eigenvalues with positive real part but at least one eigenvalue on the imaginary axis.
Citation: Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445
References:
[1]

H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis (Translated from the German by G. Metzen),, de Gruyter Studies in Mathematics, (1990).  doi: 10.1515/9783110853698.  Google Scholar

[2]

P. Brunovský, A. Erdélyi and H.-O. Walther, On a model of a currency exchange rate - local stability and periodic solutions,, J. Dynam. Differential Equations, 16 (2004), 393.  doi: 10.1007/s10884-004-4285-1.  Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis,, Applied Mathematical Sciences, (1995).  doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology,, preprint, ().   Google Scholar

[5]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delay,, in Hand. Differ. Equ.: Ordinary Differential Equations, (2006), 435.  doi: 10.1016/S1874-5725(06)80009-X.  Google Scholar

[6]

T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,, Discrete Contin. Dyn. Syst., 9 (2003), 993.  doi: 10.3934/dcds.2003.9.993.  Google Scholar

[7]

T. Krisztin, $C^{1}$-smoothness of center manifolds for differential equations with state-dependent delay,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner et al.), (2006), 213.   Google Scholar

[8]

V. A. Pliss, A reduction principle in the theory of stability of motion (Russian),, Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 1297.   Google Scholar

[9]

R. Qesmi and H.-O. Walther, Center-stable manifolds for differential equations with state-dependent delays,, Discrete Contin. Dyn. Syst., 23 (2009), 1009.  doi: 10.3934/dcds.2009.23.1009.  Google Scholar

[10]

E. Stumpf, On a differential equation with state-dependent delay: A global center-unstable manifold bordered by a periodic orbit,, Doctoral dissertation, (2010).   Google Scholar

[11]

E. Stumpf, The existence and $C^1$-smoothness of local center-unstable manifolds for differential equations with state-dependent delay,, Rostock. Math. Kolloq., 66 (2011), 3.   Google Scholar

[12]

E. Stumpf, On a differential equation with state-dependent delay: A center-unstable manifold connecting an equilibrium and a periodic orbit,, J. Dynam. Differential Equations, 24 (2012), 197.  doi: 10.1007/s10884-012-9245-6.  Google Scholar

[13]

E. Stumpf, Attraction property of local center-unstable manifolds for differential equations with state-dependent delay,, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 1.   Google Scholar

[14]

A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations,, in Dynamics Reported, (1989), 89.   Google Scholar

[15]

H.-O. Walther, The solution manifold and $C^{1}$-smoothness for differential equations with state-dependent delay,, J. of Differential Equations, 195 (2003), 46.  doi: 10.1016/j.jde.2003.07.001.  Google Scholar

[16]

H.-O. Walther, Smoothness properties of semiflows for differential equations with state-dependent delays,, J. Math. Sci. (N.Y.), 124 (2004), 5193.  doi: 10.1023/B:JOTH.0000047253.23098.12.  Google Scholar

show all references

References:
[1]

H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis (Translated from the German by G. Metzen),, de Gruyter Studies in Mathematics, (1990).  doi: 10.1515/9783110853698.  Google Scholar

[2]

P. Brunovský, A. Erdélyi and H.-O. Walther, On a model of a currency exchange rate - local stability and periodic solutions,, J. Dynam. Differential Equations, 16 (2004), 393.  doi: 10.1007/s10884-004-4285-1.  Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis,, Applied Mathematical Sciences, (1995).  doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology,, preprint, ().   Google Scholar

[5]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delay,, in Hand. Differ. Equ.: Ordinary Differential Equations, (2006), 435.  doi: 10.1016/S1874-5725(06)80009-X.  Google Scholar

[6]

T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,, Discrete Contin. Dyn. Syst., 9 (2003), 993.  doi: 10.3934/dcds.2003.9.993.  Google Scholar

[7]

T. Krisztin, $C^{1}$-smoothness of center manifolds for differential equations with state-dependent delay,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner et al.), (2006), 213.   Google Scholar

[8]

V. A. Pliss, A reduction principle in the theory of stability of motion (Russian),, Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 1297.   Google Scholar

[9]

R. Qesmi and H.-O. Walther, Center-stable manifolds for differential equations with state-dependent delays,, Discrete Contin. Dyn. Syst., 23 (2009), 1009.  doi: 10.3934/dcds.2009.23.1009.  Google Scholar

[10]

E. Stumpf, On a differential equation with state-dependent delay: A global center-unstable manifold bordered by a periodic orbit,, Doctoral dissertation, (2010).   Google Scholar

[11]

E. Stumpf, The existence and $C^1$-smoothness of local center-unstable manifolds for differential equations with state-dependent delay,, Rostock. Math. Kolloq., 66 (2011), 3.   Google Scholar

[12]

E. Stumpf, On a differential equation with state-dependent delay: A center-unstable manifold connecting an equilibrium and a periodic orbit,, J. Dynam. Differential Equations, 24 (2012), 197.  doi: 10.1007/s10884-012-9245-6.  Google Scholar

[13]

E. Stumpf, Attraction property of local center-unstable manifolds for differential equations with state-dependent delay,, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 1.   Google Scholar

[14]

A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations,, in Dynamics Reported, (1989), 89.   Google Scholar

[15]

H.-O. Walther, The solution manifold and $C^{1}$-smoothness for differential equations with state-dependent delay,, J. of Differential Equations, 195 (2003), 46.  doi: 10.1016/j.jde.2003.07.001.  Google Scholar

[16]

H.-O. Walther, Smoothness properties of semiflows for differential equations with state-dependent delays,, J. Math. Sci. (N.Y.), 124 (2004), 5193.  doi: 10.1023/B:JOTH.0000047253.23098.12.  Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]