July  2016, 36(7): 3519-3543. doi: 10.3934/dcds.2016.36.3519

Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter

1. 

National Research University Higher School of Economics, Vavilova 7, Moscow, 117312, Russian Federation, Russian Federation

2. 

University of Leeds, Leeds, LS2 9JT, United Kingdom

Received  February 2015 Revised  December 2015 Published  March 2016

We obtain sufficient conditions for the differentiability of solutions to stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. In particular, this gives conditions for the differentiability of stationary distributions of diffusion processes with respect to a parameter.
Citation: Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519
References:
[1]

A. Arapostathis, V. S. Borkar and M. K. Ghosh, Ergodic Control of Diffusion Processes,, Cambridge University Press, (2012).   Google Scholar

[2]

V. I. Bogachev, Measure Theory,, V. 1, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[3]

V. I. Bogachev, A. I. Kirillov and S. V. Shaposhnikov, On probability and integrable solutions to the stationary Kolmogorov equation,, Dokl. Russian Acad. Sci., 438 (2011), 154.  doi: 10.1134/S1064562411030112.  Google Scholar

[4]

V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Diff. Eq., 26 (2001), 2037.  doi: 10.1081/PDE-100107815.  Google Scholar

[5]

V. I. Bogachev, N. V. Krylov and M. Röckner, Elliptic equations for measures: Regularity and global bounds of densities,, J. Math. Pures Appl., 85 (2006), 743.  doi: 10.1016/j.matpur.2005.11.006.  Google Scholar

[6]

V. I. Bogachev, N. V. Krylov and M. Röckner, Elliptic and parabolic equations for measures,, Uspehi Mat. Nauk, 64 (2009), 5.  doi: 10.1070/RM2009v064n06ABEH004652.  Google Scholar

[7]

V. I. Bogachev and M. Röckner, A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts,, Teor. Verojatn. i Primen., 45 (2000), 417.  doi: 10.1137/S0040585X97978348.  Google Scholar

[8]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Estimates of densities of stationary distributions and transition probabilities of diffusion processes,, Teor. Verojatn. i Primen., 52 (2007), 240.  doi: 10.1137/S0040585X97982967.  Google Scholar

[9]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On uniqueness problems related to elliptic equations for measures,, J. Math. Sci. (New York), 176 (2011), 759.  doi: 10.1007/s10958-011-0434-3.  Google Scholar

[10]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On positive and probability solutions of the stationary Fokker-Planck-Kolmogorov equation,, Dokl. Akad. Nauk, 444 (2012), 245.  doi: 10.1134/S1064562412030143.  Google Scholar

[11]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution,, Dokl. Akad. Nauk, 457 (2014), 136.   Google Scholar

[12]

V. I. Bogachev, M. Röckner and W. Stannat, Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions,, Matem. Sb., 193 (2002), 3.  doi: 10.1070/SM2002v193n07ABEH000665.  Google Scholar

[13]

V. I. Bogachev, M. Röckner and F.-Y. Wang, Elliptic equations for invariant measures on finite and infinite dimensional manifolds,, J. Math. Pures Appl., 80 (2001), 177.  doi: 10.1016/S0021-7824(00)01187-9.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall, (1964).   Google Scholar

[15]

C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977).   Google Scholar

[17]

N. V. Krylov, Controlled Diffusion Processes,, Springer-Verlag, (1980).   Google Scholar

[18]

E. Pardoux and A. Yu. Veretennikov, On the Poisson equation and diffusion approximation. II,, Ann. Probab., 31 (2003), 1166.  doi: 10.1214/aop/1055425774.  Google Scholar

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd ed.,, Academic Press, (1980).   Google Scholar

[20]

S. V. Shaposhnikov, On interior estimates for the Sobolev norms of solutions of elliptic equations,, Matem. Zametki, 83 (2008), 316.  doi: 10.1134/S0001434608010318.  Google Scholar

[21]

N. S. Trudinger, Linear elliptic operators with measurable coefficients,, Ann. Scuola Normale Super. Pisa (3), 27 (1973), 265.   Google Scholar

[22]

N. S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients,, Math. Z., 156 (1977), 291.  doi: 10.1007/BF01214416.  Google Scholar

[23]

A. Yu. Veretennikov, On Sobolev solutions of Poisson equations in $\mathbbR^d$ with a parameter,, J. Math. Sci. (New York), 179 (2011), 48.  doi: 10.1007/s10958-011-0582-5.  Google Scholar

[24]

W. Ziemer, Weakly Differentiable Functions,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

A. Arapostathis, V. S. Borkar and M. K. Ghosh, Ergodic Control of Diffusion Processes,, Cambridge University Press, (2012).   Google Scholar

[2]

V. I. Bogachev, Measure Theory,, V. 1, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[3]

V. I. Bogachev, A. I. Kirillov and S. V. Shaposhnikov, On probability and integrable solutions to the stationary Kolmogorov equation,, Dokl. Russian Acad. Sci., 438 (2011), 154.  doi: 10.1134/S1064562411030112.  Google Scholar

[4]

V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Diff. Eq., 26 (2001), 2037.  doi: 10.1081/PDE-100107815.  Google Scholar

[5]

V. I. Bogachev, N. V. Krylov and M. Röckner, Elliptic equations for measures: Regularity and global bounds of densities,, J. Math. Pures Appl., 85 (2006), 743.  doi: 10.1016/j.matpur.2005.11.006.  Google Scholar

[6]

V. I. Bogachev, N. V. Krylov and M. Röckner, Elliptic and parabolic equations for measures,, Uspehi Mat. Nauk, 64 (2009), 5.  doi: 10.1070/RM2009v064n06ABEH004652.  Google Scholar

[7]

V. I. Bogachev and M. Röckner, A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts,, Teor. Verojatn. i Primen., 45 (2000), 417.  doi: 10.1137/S0040585X97978348.  Google Scholar

[8]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Estimates of densities of stationary distributions and transition probabilities of diffusion processes,, Teor. Verojatn. i Primen., 52 (2007), 240.  doi: 10.1137/S0040585X97982967.  Google Scholar

[9]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On uniqueness problems related to elliptic equations for measures,, J. Math. Sci. (New York), 176 (2011), 759.  doi: 10.1007/s10958-011-0434-3.  Google Scholar

[10]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On positive and probability solutions of the stationary Fokker-Planck-Kolmogorov equation,, Dokl. Akad. Nauk, 444 (2012), 245.  doi: 10.1134/S1064562412030143.  Google Scholar

[11]

V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution,, Dokl. Akad. Nauk, 457 (2014), 136.   Google Scholar

[12]

V. I. Bogachev, M. Röckner and W. Stannat, Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions,, Matem. Sb., 193 (2002), 3.  doi: 10.1070/SM2002v193n07ABEH000665.  Google Scholar

[13]

V. I. Bogachev, M. Röckner and F.-Y. Wang, Elliptic equations for invariant measures on finite and infinite dimensional manifolds,, J. Math. Pures Appl., 80 (2001), 177.  doi: 10.1016/S0021-7824(00)01187-9.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall, (1964).   Google Scholar

[15]

C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977).   Google Scholar

[17]

N. V. Krylov, Controlled Diffusion Processes,, Springer-Verlag, (1980).   Google Scholar

[18]

E. Pardoux and A. Yu. Veretennikov, On the Poisson equation and diffusion approximation. II,, Ann. Probab., 31 (2003), 1166.  doi: 10.1214/aop/1055425774.  Google Scholar

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd ed.,, Academic Press, (1980).   Google Scholar

[20]

S. V. Shaposhnikov, On interior estimates for the Sobolev norms of solutions of elliptic equations,, Matem. Zametki, 83 (2008), 316.  doi: 10.1134/S0001434608010318.  Google Scholar

[21]

N. S. Trudinger, Linear elliptic operators with measurable coefficients,, Ann. Scuola Normale Super. Pisa (3), 27 (1973), 265.   Google Scholar

[22]

N. S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients,, Math. Z., 156 (1977), 291.  doi: 10.1007/BF01214416.  Google Scholar

[23]

A. Yu. Veretennikov, On Sobolev solutions of Poisson equations in $\mathbbR^d$ with a parameter,, J. Math. Sci. (New York), 179 (2011), 48.  doi: 10.1007/s10958-011-0582-5.  Google Scholar

[24]

W. Ziemer, Weakly Differentiable Functions,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587

[6]

Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic & Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041

[7]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[8]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[9]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[10]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[11]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[14]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[15]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[16]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[17]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[18]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[19]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[20]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

[Back to Top]