July  2016, 36(7): 3623-3638. doi: 10.3934/dcds.2016.36.3623

Periodic shadowing of vector fields

1. 

Department of Mathematics, Hohai University, Nanjing 211100, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539

3. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received  March 2015 Revised  December 2015 Published  March 2016

A vector field has the periodic shadowing property if for any $\varepsilon>0$ there is $d>0$ such that, for any periodic $d$-pseudo orbit $g$ there exists a periodic orbit or a singularity in which $g$ is $\varepsilon$-shadowed. In this paper, we show that a vector field is in the $C^1$ interior of the set of vector fields satisfying the periodic shadowing property if and only if it is $\Omega$-stable. More precisely, we prove that the $C^1$ interior of the set of vector fields satisfying the orbital periodic shadowing property is a subset of the set of $\Omega$-stable vector fields.
Citation: Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623
References:
[1]

Proc. 5th Int. Conf. on Nonlin. Oscill., Kiev, 2 (1970), 39-45. Google Scholar

[2]

J. Inst. Math. Jussieu, 12 (2013), 449-501. doi: 10.1017/S1474748012000710.  Google Scholar

[3]

Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975.  Google Scholar

[4]

J. Dynam. Differential Equations, 28 (2016), 225-237. doi: 10.1007/s10884-014-9399-5.  Google Scholar

[5]

Invent. Math., 164 (2006), 279-315. doi: 10.1007/s00222-005-0479-3.  Google Scholar

[6]

J. Differential Equations, 232 (2007), 303-313. doi: 10.1016/j.jde.2006.08.012.  Google Scholar

[7]

Sem. Note, Vol. 39, Tokyo Univ., 1979. Google Scholar

[8]

Regul. Chaotic Dyn., 15 (2010), 404-417. doi: 10.1134/S1560354710020255.  Google Scholar

[9]

Kluwer, 2000. doi: 10.1007/978-1-4757-3210-8.  Google Scholar

[10]

J. Differential Equations, 252 (2012), 1723-1747. doi: 10.1016/j.jde.2011.07.026.  Google Scholar

[11]

Lecture Notes in Math., Vol. 1706, Springer, 1999.  Google Scholar

[12]

Discrete Contin. Dyn. Syst. B, 14 (2010), 733-737. doi: 10.3934/dcdsb.2010.14.733.  Google Scholar

[13]

J. Differential Equations, 248 (2010), 1345-1375. doi: 10.1016/j.jde.2009.09.024.  Google Scholar

[14]

Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[15]

Rocky Mountain J. Math., 7 (1977), 425-437. doi: 10.1216/RMJ-1977-7-3-425.  Google Scholar

[16]

Osaka J. Math., 31 (1994), 373-386.  Google Scholar

[17]

Nagoya Math. J., 79 (1980), 33-45.  Google Scholar

[18]

Discrete Contin. Dyn. Syst., 8 (2002), 257-265. doi: 10.3934/dcds.2002.8.257.  Google Scholar

[19]

Trans. Amer. Math. Soc., 352 (2000), 5213-5230. doi: 10.1090/S0002-9947-00-02553-8.  Google Scholar

[20]

Discrete Cont. Dyn. Syst., 21 (2008), 945-957. doi: 10.3934/dcds.2008.21.945.  Google Scholar

show all references

References:
[1]

Proc. 5th Int. Conf. on Nonlin. Oscill., Kiev, 2 (1970), 39-45. Google Scholar

[2]

J. Inst. Math. Jussieu, 12 (2013), 449-501. doi: 10.1017/S1474748012000710.  Google Scholar

[3]

Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975.  Google Scholar

[4]

J. Dynam. Differential Equations, 28 (2016), 225-237. doi: 10.1007/s10884-014-9399-5.  Google Scholar

[5]

Invent. Math., 164 (2006), 279-315. doi: 10.1007/s00222-005-0479-3.  Google Scholar

[6]

J. Differential Equations, 232 (2007), 303-313. doi: 10.1016/j.jde.2006.08.012.  Google Scholar

[7]

Sem. Note, Vol. 39, Tokyo Univ., 1979. Google Scholar

[8]

Regul. Chaotic Dyn., 15 (2010), 404-417. doi: 10.1134/S1560354710020255.  Google Scholar

[9]

Kluwer, 2000. doi: 10.1007/978-1-4757-3210-8.  Google Scholar

[10]

J. Differential Equations, 252 (2012), 1723-1747. doi: 10.1016/j.jde.2011.07.026.  Google Scholar

[11]

Lecture Notes in Math., Vol. 1706, Springer, 1999.  Google Scholar

[12]

Discrete Contin. Dyn. Syst. B, 14 (2010), 733-737. doi: 10.3934/dcdsb.2010.14.733.  Google Scholar

[13]

J. Differential Equations, 248 (2010), 1345-1375. doi: 10.1016/j.jde.2009.09.024.  Google Scholar

[14]

Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[15]

Rocky Mountain J. Math., 7 (1977), 425-437. doi: 10.1216/RMJ-1977-7-3-425.  Google Scholar

[16]

Osaka J. Math., 31 (1994), 373-386.  Google Scholar

[17]

Nagoya Math. J., 79 (1980), 33-45.  Google Scholar

[18]

Discrete Contin. Dyn. Syst., 8 (2002), 257-265. doi: 10.3934/dcds.2002.8.257.  Google Scholar

[19]

Trans. Amer. Math. Soc., 352 (2000), 5213-5230. doi: 10.1090/S0002-9947-00-02553-8.  Google Scholar

[20]

Discrete Cont. Dyn. Syst., 21 (2008), 945-957. doi: 10.3934/dcds.2008.21.945.  Google Scholar

[1]

Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021063

[2]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[3]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[6]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[7]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[8]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[9]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[10]

Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021067

[11]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[12]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[13]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[14]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[15]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[16]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

[18]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[19]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]