-
Previous Article
On blow-up criterion for the nonlinear Schrödinger equation
- DCDS Home
- This Issue
-
Next Article
On some variational problems set on domains tending to infinity
Periodic shadowing of vector fields
1. | Department of Mathematics, Hohai University, Nanjing 211100, China |
2. | School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539 |
3. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
References:
[1] |
Proc. 5th Int. Conf. on Nonlin. Oscill., Kiev, 2 (1970), 39-45. Google Scholar |
[2] |
J. Inst. Math. Jussieu, 12 (2013), 449-501.
doi: 10.1017/S1474748012000710. |
[3] |
Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975. |
[4] |
J. Dynam. Differential Equations, 28 (2016), 225-237.
doi: 10.1007/s10884-014-9399-5. |
[5] |
Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[6] |
J. Differential Equations, 232 (2007), 303-313.
doi: 10.1016/j.jde.2006.08.012. |
[7] |
Sem. Note, Vol. 39, Tokyo Univ., 1979. Google Scholar |
[8] |
Regul. Chaotic Dyn., 15 (2010), 404-417.
doi: 10.1134/S1560354710020255. |
[9] |
Kluwer, 2000.
doi: 10.1007/978-1-4757-3210-8. |
[10] |
J. Differential Equations, 252 (2012), 1723-1747.
doi: 10.1016/j.jde.2011.07.026. |
[11] |
Lecture Notes in Math., Vol. 1706, Springer, 1999. |
[12] |
Discrete Contin. Dyn. Syst. B, 14 (2010), 733-737.
doi: 10.3934/dcdsb.2010.14.733. |
[13] |
J. Differential Equations, 248 (2010), 1345-1375.
doi: 10.1016/j.jde.2009.09.024. |
[14] |
Nonlinearity, 23 (2010), 2509-2515.
doi: 10.1088/0951-7715/23/10/009. |
[15] |
Rocky Mountain J. Math., 7 (1977), 425-437.
doi: 10.1216/RMJ-1977-7-3-425. |
[16] |
Osaka J. Math., 31 (1994), 373-386. |
[17] |
Nagoya Math. J., 79 (1980), 33-45. |
[18] |
Discrete Contin. Dyn. Syst., 8 (2002), 257-265.
doi: 10.3934/dcds.2002.8.257. |
[19] |
Trans. Amer. Math. Soc., 352 (2000), 5213-5230.
doi: 10.1090/S0002-9947-00-02553-8. |
[20] |
Discrete Cont. Dyn. Syst., 21 (2008), 945-957.
doi: 10.3934/dcds.2008.21.945. |
show all references
References:
[1] |
Proc. 5th Int. Conf. on Nonlin. Oscill., Kiev, 2 (1970), 39-45. Google Scholar |
[2] |
J. Inst. Math. Jussieu, 12 (2013), 449-501.
doi: 10.1017/S1474748012000710. |
[3] |
Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975. |
[4] |
J. Dynam. Differential Equations, 28 (2016), 225-237.
doi: 10.1007/s10884-014-9399-5. |
[5] |
Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[6] |
J. Differential Equations, 232 (2007), 303-313.
doi: 10.1016/j.jde.2006.08.012. |
[7] |
Sem. Note, Vol. 39, Tokyo Univ., 1979. Google Scholar |
[8] |
Regul. Chaotic Dyn., 15 (2010), 404-417.
doi: 10.1134/S1560354710020255. |
[9] |
Kluwer, 2000.
doi: 10.1007/978-1-4757-3210-8. |
[10] |
J. Differential Equations, 252 (2012), 1723-1747.
doi: 10.1016/j.jde.2011.07.026. |
[11] |
Lecture Notes in Math., Vol. 1706, Springer, 1999. |
[12] |
Discrete Contin. Dyn. Syst. B, 14 (2010), 733-737.
doi: 10.3934/dcdsb.2010.14.733. |
[13] |
J. Differential Equations, 248 (2010), 1345-1375.
doi: 10.1016/j.jde.2009.09.024. |
[14] |
Nonlinearity, 23 (2010), 2509-2515.
doi: 10.1088/0951-7715/23/10/009. |
[15] |
Rocky Mountain J. Math., 7 (1977), 425-437.
doi: 10.1216/RMJ-1977-7-3-425. |
[16] |
Osaka J. Math., 31 (1994), 373-386. |
[17] |
Nagoya Math. J., 79 (1980), 33-45. |
[18] |
Discrete Contin. Dyn. Syst., 8 (2002), 257-265.
doi: 10.3934/dcds.2002.8.257. |
[19] |
Trans. Amer. Math. Soc., 352 (2000), 5213-5230.
doi: 10.1090/S0002-9947-00-02553-8. |
[20] |
Discrete Cont. Dyn. Syst., 21 (2008), 945-957.
doi: 10.3934/dcds.2008.21.945. |
[1] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021063 |
[2] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021040 |
[3] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047 |
[4] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[5] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[6] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 |
[7] |
Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220 |
[8] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[9] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[10] |
Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021067 |
[11] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[12] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[13] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[14] |
Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080 |
[15] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[16] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[17] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381 |
[18] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[19] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[20] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]