\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On blow-up criterion for the nonlinear Schrödinger equation

Abstract Related Papers Cited by
  • The blowup is studied for the nonlinear Schrödinger equation $iu_{t}+\Delta u+ |u|^{p-1}u=0$ with $p$ is odd and $p\ge 1+\frac 4{N-2}$ (the energy-critical or energy-supercritical case). It is shown that the solution with negative energy $E(u_0)<0$ blows up in finite or infinite time. A new proof is also presented for the previous result in [9], in which a similar result in a case of energy-subcritical was shown.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Bergé, Wave collapse in physics: Principle and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.doi: 10.1016/S0370-1573(97)00092-6.

    [2]

    D. Cao and Q. Guo, Divergent solutions to the 5D Hartree equations, Colloquium Mathematicum, 125 (2011), 255-287.doi: 10.4064/cm125-2-10.

    [3]

    T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^ s$, Nonlinear Anal., Theory, Methods & Applications, 14 (1990), 807-836.doi: 10.1016/0362-546X(90)90023-A.

    [4]

    T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. American Mathematical Society, 2003.

    [5]

    L. Glangetas and F. Merle, A Geometrical Approach of Existence of Blow up Solutions in $H^1$ for Nonlinear Schrödinger Equation, in Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.

    [6]

    J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.doi: 10.1007/BF02099195.

    [7]

    R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys., 18 (1977), 1794-1797.doi: 10.1063/1.523491.

    [8]

    Q. Guo, Nonscattering solutions to the $ L^{2} $-supercritical NLS equations, preprint, arXiv:1101.2271.

    [9]

    J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation, Comm. Partial Differ. Eqns, 35 (2010), 878-905.doi: 10.1080/03605301003646713.

    [10]

    M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039.

    [11]

    C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4.

    [12]

    R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differ. Eqns, 35 (2010), 945-987.doi: 10.1080/03605301003717084.

    [13]

    J. E. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263.doi: 10.1016/0022-1236(78)90073-3.

    [14]

    F. Merle and P. Raphael, The blow-up dynamics and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.doi: 10.4007/annals.2005.161.157.

    [15]

    Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908.doi: 10.1016/S0362-546X(96)00036-3.

    [16]

    Ch. Miao and B. Zhang, Harmonic Annlysis Method Apply to Partial Differential Equations,(in Chinese) Beijing, Science Press, 2008.

    [17]

    H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999), 193-270.doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.

    [18]

    T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.doi: 10.1016/0022-0396(91)90052-B.

    [19]

    T. Ogawa and Y. Tsutsumi, Blowup of $H^1$-solution for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.doi: 10.2307/2048340.

    [20]

    P. Raphael and J. Szeftel, Standing ring blow up solutions to the $N$ dimensional quintic NLS, Comm. Math. Phys., 290 (2009), 973-996.doi: 10.1007/s00220-009-0796-2.

    [21]

    C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer, New York, 1999.

    [22]

    M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return