July  2016, 36(7): 3639-3650. doi: 10.3934/dcds.2016.36.3639

On blow-up criterion for the nonlinear Schrödinger equation

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China, China

Received  March 2015 Revised  November 2015 Published  March 2016

The blowup is studied for the nonlinear Schrödinger equation $iu_{t}+\Delta u+ |u|^{p-1}u=0$ with $p$ is odd and $p\ge 1+\frac 4{N-2}$ (the energy-critical or energy-supercritical case). It is shown that the solution with negative energy $E(u_0)<0$ blows up in finite or infinite time. A new proof is also presented for the previous result in [9], in which a similar result in a case of energy-subcritical was shown.
Citation: Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639
References:
[1]

L. Bergé, Wave collapse in physics: Principle and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370. doi: 10.1016/S0370-1573(97)00092-6.

[2]

D. Cao and Q. Guo, Divergent solutions to the 5D Hartree equations, Colloquium Mathematicum, 125 (2011), 255-287. doi: 10.4064/cm125-2-10.

[3]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^ s$, Nonlinear Anal., Theory, Methods & Applications, 14 (1990), 807-836. doi: 10.1016/0362-546X(90)90023-A.

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. American Mathematical Society, 2003.

[5]

L. Glangetas and F. Merle, A Geometrical Approach of Existence of Blow up Solutions in $H^1$ for Nonlinear Schrödinger Equation, in Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.

[6]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188. doi: 10.1007/BF02099195.

[7]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1063/1.523491.

[8]

Q. Guo, Nonscattering solutions to the $ L^{2} $-supercritical NLS equations, preprint, arXiv:1101.2271.

[9]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation, Comm. Partial Differ. Eqns, 35 (2010), 878-905. doi: 10.1080/03605301003646713.

[10]

M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.

[11]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[12]

R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differ. Eqns, 35 (2010), 945-987. doi: 10.1080/03605301003717084.

[13]

J. E. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263. doi: 10.1016/0022-1236(78)90073-3.

[14]

F. Merle and P. Raphael, The blow-up dynamics and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222. doi: 10.4007/annals.2005.161.157.

[15]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. doi: 10.1016/S0362-546X(96)00036-3.

[16]

Ch. Miao and B. Zhang, Harmonic Annlysis Method Apply to Partial Differential Equations,(in Chinese) Beijing, Science Press, 2008.

[17]

H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999), 193-270. doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.

[19]

T. Ogawa and Y. Tsutsumi, Blowup of $H^1$-solution for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496. doi: 10.2307/2048340.

[20]

P. Raphael and J. Szeftel, Standing ring blow up solutions to the $N$ dimensional quintic NLS, Comm. Math. Phys., 290 (2009), 973-996. doi: 10.1007/s00220-009-0796-2.

[21]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer, New York, 1999.

[22]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

show all references

References:
[1]

L. Bergé, Wave collapse in physics: Principle and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370. doi: 10.1016/S0370-1573(97)00092-6.

[2]

D. Cao and Q. Guo, Divergent solutions to the 5D Hartree equations, Colloquium Mathematicum, 125 (2011), 255-287. doi: 10.4064/cm125-2-10.

[3]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^ s$, Nonlinear Anal., Theory, Methods & Applications, 14 (1990), 807-836. doi: 10.1016/0362-546X(90)90023-A.

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. American Mathematical Society, 2003.

[5]

L. Glangetas and F. Merle, A Geometrical Approach of Existence of Blow up Solutions in $H^1$ for Nonlinear Schrödinger Equation, in Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.

[6]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188. doi: 10.1007/BF02099195.

[7]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1063/1.523491.

[8]

Q. Guo, Nonscattering solutions to the $ L^{2} $-supercritical NLS equations, preprint, arXiv:1101.2271.

[9]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3d NLS equation, Comm. Partial Differ. Eqns, 35 (2010), 878-905. doi: 10.1080/03605301003646713.

[10]

M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.

[11]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[12]

R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering, Comm. Partial Differ. Eqns, 35 (2010), 945-987. doi: 10.1080/03605301003717084.

[13]

J. E. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., 30 (1978), 245-263. doi: 10.1016/0022-1236(78)90073-3.

[14]

F. Merle and P. Raphael, The blow-up dynamics and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222. doi: 10.4007/annals.2005.161.157.

[15]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. doi: 10.1016/S0362-546X(96)00036-3.

[16]

Ch. Miao and B. Zhang, Harmonic Annlysis Method Apply to Partial Differential Equations,(in Chinese) Beijing, Science Press, 2008.

[17]

H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999), 193-270. doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.

[19]

T. Ogawa and Y. Tsutsumi, Blowup of $H^1$-solution for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496. doi: 10.2307/2048340.

[20]

P. Raphael and J. Szeftel, Standing ring blow up solutions to the $N$ dimensional quintic NLS, Comm. Math. Phys., 290 (2009), 973-996. doi: 10.1007/s00220-009-0796-2.

[21]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer, New York, 1999.

[22]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

[1]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[2]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[3]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[6]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[9]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[10]

Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022111

[11]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[12]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[13]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[14]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[15]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[16]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[17]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[18]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[19]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[20]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (191)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]