July  2016, 36(7): 3651-3675. doi: 10.3934/dcds.2016.36.3651

Spectral properties of renormalization for area-preserving maps

1. 

Department of Mathematics, Uppsala University, Uppsala, Sweden

2. 

Fraunhofer-Chalmers Research Centre for Industrial Mathematics, SE-412 88 Gothenburg, Sweden

Received  December 2014 Revised  November 2015 Published  March 2016

Area-preserving maps have been observed to undergo a universal period-doubling cascade, analogous to the famous Feigenbaum-Coullet-Tresser period doubling cascade in one-dimensional dynamics. A renormalization approach has been used by Eckmann, Koch and Wittwer in a computer-assisted proof of existence of a conservative renormalization fixed point.
    Furthermore, it has been shown by Gaidashev, Johnson and Martens that infinitely renormalizable maps in a neighborhood of this fixed point admit invariant Cantor sets with vanishing Lyapunov exponents on which dynamics for any two maps is smoothly conjugate.
    This rigidity is a consequence of an interplay between the decay of geometry and the convergence rate of renormalization towards the fixed point.
    In this paper we prove a result which is crucial for a demonstration of rigidity: that an upper bound on this convergence rate of renormalizations of infinitely renormalizable maps is sufficiently small.
Citation: Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651
References:
[1]

J. J. Abad and H. Koch, Renormalization and periodic orbits for Hamiltonian flows,, Comm. Math. Phys., 212 (2000), 371.  doi: 10.1007/s002200000218.  Google Scholar

[2]

J. J. Abad, H. Koch and P. Wittwer, A renormalization group for Hamiltonians: Numerical results},, Nonlinearity, 11 (1998), 1185.  doi: 10.1088/0951-7715/11/5/001.  Google Scholar

[3]

G. Benettin et al, Universal properties in conservative dynamical systems,, Lettere al Nuovo Cimento, 28 (1980), 1.   Google Scholar

[4]

T. Bountis, Period doubling bifurcations and universality in conservative Systems,, Physica, 3 (1981), 577.  doi: 10.1016/0167-2789(81)90041-5.  Google Scholar

[5]

A. de Carvalho, M. Lyubich and M. Martens, Renormalization in the Hénon family, I: Universality but non-rigidity,, J. Stat. Phys, 121 (2005), 611.  doi: 10.1007/s10955-005-8668-4.  Google Scholar

[6]

P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on $\mathbbR^n$,, J. Stat. Phys., 3D (1980).   Google Scholar

[7]

P. Collet, J.-P. Eckmann and H. Koch, On universality for area-preserving maps of the plane,, Physica D, 3 (1981), 457.  doi: 10.1016/0167-2789(81)90033-6.  Google Scholar

[8]

B. Derrida and Y. Pomeau, Feigenbaum's ratios of two dimensional area preserving maps,, Phys. Lett. A, 80 (1980), 217.  doi: 10.1016/0375-9601(80)90003-1.  Google Scholar

[9]

J.-P. Eckmann, H. Koch and P. Wittwer, Existence of a fixed point of the doubling transformation for area-preserving maps of the plane,, Phys. Rev. A, 26 (1982), 720.  doi: 10.1103/PhysRevA.26.720.  Google Scholar

[10]

J.-P. Eckmann, H. Koch and P. Wittwer, A computer-assisted proof of universality for area-preserving maps,, Memoirs of the American Mathematical Society, 47 (1984).  doi: 10.1090/memo/0289.  Google Scholar

[11]

H. Epstein, New proofs of the existence of the Feigenbaum functions,, Commun. Math. Phys., 106 (1986), 395.  doi: 10.1007/BF01207254.  Google Scholar

[12]

D. Gaidashev, Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori,, Discrete Contin. Dyn. Syst., 13 (2005), 63.  doi: 10.3934/dcds.2005.13.63.  Google Scholar

[13]

D. Gaidashev, Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle,, Int. Journal of Bifurcations and Chaos, 21 (2011), 3217.  doi: 10.1142/S0218127411030477.  Google Scholar

[14]

D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Hyperbolic sets,, Nonlinearity, 22 (2009), 2487.  doi: 10.1088/0951-7715/22/10/010.  Google Scholar

[15]

D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Stable sets,, J. Mod. Dyn., 3 (2009), 555.  doi: 10.3934/jmd.2009.3.555.  Google Scholar

[16]

D. Gaidashev, T. Johnson and M. Martens, Rigidity for infinitely renormalizable area-preserving maps,, Duke Mathematical Journal, 165 (2016), 129.  doi: 10.1215/00127094-3165327.  Google Scholar

[17]

D. Gaidashev and H. Koch, Renormalization and shearless invariant tori: Numerical results,, Nonlinearity, 17 (2004), 1713.  doi: 10.1088/0951-7715/17/5/008.  Google Scholar

[18]

D. Gaidashev and H. Koch, Period doubling in area-preserving maps: An associated one-dimensional problem,, Ergod. Th. & Dyn. Sys., 31 (2011), 1193.  doi: 10.1017/S0143385710000283.  Google Scholar

[19]

P. Hazard, Hénon-like maps with arbitrary stationary combinatorics,, Ergod. Th. & Dynam. Sys., 31 (2011), 1391.  doi: 10.1017/S0143385710000398.  Google Scholar

[20]

P. E. Hazard, M. Lyubich and M. Martens, Renormalisable Henon-like maps and unbounded geometry,, Nonlinearity, 25 (2012), 397.  doi: 10.1088/0951-7715/25/2/397.  Google Scholar

[21]

R. H. G. Helleman, Self-generated chaotic behavior in nonlinear mechanics,, in Fundamental Problems in Statistical Mechanics (ed. E. G. D. Cohen), (1980), 165.   Google Scholar

[22]

T. Johnson, No elliptic islands for the universal area-preserving map,, Nonlinearity, 24 (2011), 2063.  doi: 10.1088/0951-7715/24/7/008.  Google Scholar

[23]

K. Khanin, J. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory,, Comm. Math. Phys., 270 (2007), 197.  doi: 10.1007/s00220-006-0125-y.  Google Scholar

[24]

H. Koch, On the renormalization of Hamiltonian flows, and critical invariant tori,, Discrete Contin. Dyn. Syst., 8 (2002), 633.  doi: 10.3934/dcds.2002.8.633.  Google Scholar

[25]

H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori,, Discrete Contin. Dyn. Syst., 11 (2004), 881.  doi: 10.3934/dcds.2004.11.881.  Google Scholar

[26]

H. Koch, Existence of critical invariant tori,, Ergod. Th. & Dynam. Sys., 28 (2008), 1879.  doi: 10.1017/S0143385708000199.  Google Scholar

[27]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori,, Nonlinearity, 18 (2005), 2513.  doi: 10.1088/0951-7715/18/6/006.  Google Scholar

[28]

M. Lyubich and M. Martens, Renormalization in the Hénon family, II: Homoclinic tangle,, Invent. Math., 186 (2011), 115.  doi: 10.1007/s00222-011-0316-9.  Google Scholar

[29]

M. Lyubich and M. Martens, Probabilistic universality in two-dimensional dynamics,, e-print , (2011).   Google Scholar

[30]

Y. W. Nam, Renormalization for three-dimensional Hénon-like maps,, e-print , (2014).   Google Scholar

[31]

, Programs, available at , ().   Google Scholar

show all references

References:
[1]

J. J. Abad and H. Koch, Renormalization and periodic orbits for Hamiltonian flows,, Comm. Math. Phys., 212 (2000), 371.  doi: 10.1007/s002200000218.  Google Scholar

[2]

J. J. Abad, H. Koch and P. Wittwer, A renormalization group for Hamiltonians: Numerical results},, Nonlinearity, 11 (1998), 1185.  doi: 10.1088/0951-7715/11/5/001.  Google Scholar

[3]

G. Benettin et al, Universal properties in conservative dynamical systems,, Lettere al Nuovo Cimento, 28 (1980), 1.   Google Scholar

[4]

T. Bountis, Period doubling bifurcations and universality in conservative Systems,, Physica, 3 (1981), 577.  doi: 10.1016/0167-2789(81)90041-5.  Google Scholar

[5]

A. de Carvalho, M. Lyubich and M. Martens, Renormalization in the Hénon family, I: Universality but non-rigidity,, J. Stat. Phys, 121 (2005), 611.  doi: 10.1007/s10955-005-8668-4.  Google Scholar

[6]

P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on $\mathbbR^n$,, J. Stat. Phys., 3D (1980).   Google Scholar

[7]

P. Collet, J.-P. Eckmann and H. Koch, On universality for area-preserving maps of the plane,, Physica D, 3 (1981), 457.  doi: 10.1016/0167-2789(81)90033-6.  Google Scholar

[8]

B. Derrida and Y. Pomeau, Feigenbaum's ratios of two dimensional area preserving maps,, Phys. Lett. A, 80 (1980), 217.  doi: 10.1016/0375-9601(80)90003-1.  Google Scholar

[9]

J.-P. Eckmann, H. Koch and P. Wittwer, Existence of a fixed point of the doubling transformation for area-preserving maps of the plane,, Phys. Rev. A, 26 (1982), 720.  doi: 10.1103/PhysRevA.26.720.  Google Scholar

[10]

J.-P. Eckmann, H. Koch and P. Wittwer, A computer-assisted proof of universality for area-preserving maps,, Memoirs of the American Mathematical Society, 47 (1984).  doi: 10.1090/memo/0289.  Google Scholar

[11]

H. Epstein, New proofs of the existence of the Feigenbaum functions,, Commun. Math. Phys., 106 (1986), 395.  doi: 10.1007/BF01207254.  Google Scholar

[12]

D. Gaidashev, Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori,, Discrete Contin. Dyn. Syst., 13 (2005), 63.  doi: 10.3934/dcds.2005.13.63.  Google Scholar

[13]

D. Gaidashev, Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle,, Int. Journal of Bifurcations and Chaos, 21 (2011), 3217.  doi: 10.1142/S0218127411030477.  Google Scholar

[14]

D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Hyperbolic sets,, Nonlinearity, 22 (2009), 2487.  doi: 10.1088/0951-7715/22/10/010.  Google Scholar

[15]

D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Stable sets,, J. Mod. Dyn., 3 (2009), 555.  doi: 10.3934/jmd.2009.3.555.  Google Scholar

[16]

D. Gaidashev, T. Johnson and M. Martens, Rigidity for infinitely renormalizable area-preserving maps,, Duke Mathematical Journal, 165 (2016), 129.  doi: 10.1215/00127094-3165327.  Google Scholar

[17]

D. Gaidashev and H. Koch, Renormalization and shearless invariant tori: Numerical results,, Nonlinearity, 17 (2004), 1713.  doi: 10.1088/0951-7715/17/5/008.  Google Scholar

[18]

D. Gaidashev and H. Koch, Period doubling in area-preserving maps: An associated one-dimensional problem,, Ergod. Th. & Dyn. Sys., 31 (2011), 1193.  doi: 10.1017/S0143385710000283.  Google Scholar

[19]

P. Hazard, Hénon-like maps with arbitrary stationary combinatorics,, Ergod. Th. & Dynam. Sys., 31 (2011), 1391.  doi: 10.1017/S0143385710000398.  Google Scholar

[20]

P. E. Hazard, M. Lyubich and M. Martens, Renormalisable Henon-like maps and unbounded geometry,, Nonlinearity, 25 (2012), 397.  doi: 10.1088/0951-7715/25/2/397.  Google Scholar

[21]

R. H. G. Helleman, Self-generated chaotic behavior in nonlinear mechanics,, in Fundamental Problems in Statistical Mechanics (ed. E. G. D. Cohen), (1980), 165.   Google Scholar

[22]

T. Johnson, No elliptic islands for the universal area-preserving map,, Nonlinearity, 24 (2011), 2063.  doi: 10.1088/0951-7715/24/7/008.  Google Scholar

[23]

K. Khanin, J. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory,, Comm. Math. Phys., 270 (2007), 197.  doi: 10.1007/s00220-006-0125-y.  Google Scholar

[24]

H. Koch, On the renormalization of Hamiltonian flows, and critical invariant tori,, Discrete Contin. Dyn. Syst., 8 (2002), 633.  doi: 10.3934/dcds.2002.8.633.  Google Scholar

[25]

H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori,, Discrete Contin. Dyn. Syst., 11 (2004), 881.  doi: 10.3934/dcds.2004.11.881.  Google Scholar

[26]

H. Koch, Existence of critical invariant tori,, Ergod. Th. & Dynam. Sys., 28 (2008), 1879.  doi: 10.1017/S0143385708000199.  Google Scholar

[27]

S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori,, Nonlinearity, 18 (2005), 2513.  doi: 10.1088/0951-7715/18/6/006.  Google Scholar

[28]

M. Lyubich and M. Martens, Renormalization in the Hénon family, II: Homoclinic tangle,, Invent. Math., 186 (2011), 115.  doi: 10.1007/s00222-011-0316-9.  Google Scholar

[29]

M. Lyubich and M. Martens, Probabilistic universality in two-dimensional dynamics,, e-print , (2011).   Google Scholar

[30]

Y. W. Nam, Renormalization for three-dimensional Hénon-like maps,, e-print , (2014).   Google Scholar

[31]

, Programs, available at , ().   Google Scholar

[1]

Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555

[2]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[3]

Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007

[4]

Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231

[5]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[6]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[7]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507

[8]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[9]

Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933

[10]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[11]

Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200

[12]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[13]

Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095

[14]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[15]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[16]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[17]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[18]

Jianlu Zhang. Coexistence of period 2 and 3 caustics for deformative nearly circular billiard maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6419-6440. doi: 10.3934/dcds.2019278

[19]

Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053

[20]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]