January  2016, 36(1): 371-402. doi: 10.3934/dcds.2016.36.371

Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework

1. 

Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

3. 

College of Science, Northwest A&F University, Yangling, Shaanxi 712100

Received  September 2014 Revised  April 2015 Published  June 2015

In this paper, we consider the well-posedness of the Cauchy problem of the 3D incompressible nematic liquid crystal system with initial data in the critical Besov space $\dot{B}^{\frac{3}{p}-1}_{p,1}(\mathbb{R}^{3})\times \dot{B}^{\frac{3}{q}}_{q,1}(\mathbb{R}^{3})$ with $1< p<\infty$, $1\leq q<\infty$ and \begin{align*} -\min\{\frac{1}{3},\frac{1}{2p}\}\leq \frac{1}{q}-\frac{1}{p}\leq \frac{1}{3}. \end{align*} In particular, if we impose the restrictive condition $1< p<6$, we prove that there exist two positive constants $C_{0}$ and $c_{0}$ such that the nematic liquid crystal system has a unique global solution with initial data $(u_{0},d_{0}) = (u^{h}_{0}, u^{3}_{0}, d_{0})$ which satisfies \begin{align*} ((1+\frac{1}{\nu\mu})\|d_{0}-\overline{d}_{0}\|_{\dot{B}^{\frac{3}{q}}_{q,1}}+ \frac{1}{\nu}\|u_{0}^{h}\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}}) \exp\left\{\frac{C_{0}}{\nu^{2}}(\|u_{0}^{3}\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}}+\frac{1}{\mu})^{2}\right\}\leq c_{0}, \end{align*} where $\overline{d}_{0}$ is a constant vector with $|\overline{d}_{0}|=1$. Here $\nu$ and $\mu$ are two positive viscosity constants.
Citation: Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions sutosimilaires éequations de Naveir-Stokes,, Séminaire Équations aux Dérivées Partielles de l'École Polytecnique, (): 1993.   Google Scholar

[3]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de damps de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differ. Equ., 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[6]

R. Danchin, Fourior Analysis Methods for PDE's,, , (2005).   Google Scholar

[7]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[8]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Advances in Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[11]

J. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in $L_{loc}^3 (\mathbbR^{3})$,, Arch. Rational Mech. Anal., 210 (2013), 177.  doi: 10.1007/s00205-013-0643-7.  Google Scholar

[12]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Cal. Var., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[13]

J. Huang, M. Paicu and P. Zhang, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-lipschitz velocity,, Arch. Rational Mech. Anal., 209 (2013), 631.  doi: 10.1007/s00205-013-0624-x.  Google Scholar

[14]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differ. Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

F. Leslie, Theory of flow phenomenum in liquid crystals., In The Theory of Liquid Crystals, 4 (1979), 1.   Google Scholar

[18]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman and Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[19]

X. Li and D. Wang, Global solution to the incompressible flow of liquid crystal,, J. Differ. Equ., 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[20]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[21]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[22]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Disc. Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[23]

F. Lin, J. Lin and C. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[24]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annal. Math., 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[25]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three,, , (2014).  doi: 10.1002/cpa.21583.  Google Scholar

[26]

J. Lin and S. Ding, On the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158.  doi: 10.1002/mma.1548.  Google Scholar

[27]

Q. Liu and J. Zhao, A regularity criterion for the solution of the nematic liquid crystal flows in terms of $\dotB_{\infty,\infty}^{-1}$-norm,, J. Math. Anal. Appl., 407 (2013), 557.  doi: 10.1016/j.jmaa.2013.05.048.  Google Scholar

[28]

Q. Liu, T. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system,, J. Differ. Equ., 258 (2015), 1519.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[29]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[30]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[32]

W. Tan and Z. Yin, Global existence in critical space for liquid crystal flows in $\mathbbR^N$,, preprint., ().   Google Scholar

[33]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[34]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions sutosimilaires éequations de Naveir-Stokes,, Séminaire Équations aux Dérivées Partielles de l'École Polytecnique, (): 1993.   Google Scholar

[3]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de damps de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differ. Equ., 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[6]

R. Danchin, Fourior Analysis Methods for PDE's,, , (2005).   Google Scholar

[7]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[8]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Advances in Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[11]

J. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in $L_{loc}^3 (\mathbbR^{3})$,, Arch. Rational Mech. Anal., 210 (2013), 177.  doi: 10.1007/s00205-013-0643-7.  Google Scholar

[12]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Cal. Var., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[13]

J. Huang, M. Paicu and P. Zhang, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-lipschitz velocity,, Arch. Rational Mech. Anal., 209 (2013), 631.  doi: 10.1007/s00205-013-0624-x.  Google Scholar

[14]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differ. Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

F. Leslie, Theory of flow phenomenum in liquid crystals., In The Theory of Liquid Crystals, 4 (1979), 1.   Google Scholar

[18]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman and Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[19]

X. Li and D. Wang, Global solution to the incompressible flow of liquid crystal,, J. Differ. Equ., 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[20]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[21]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[22]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Disc. Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[23]

F. Lin, J. Lin and C. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[24]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annal. Math., 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[25]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three,, , (2014).  doi: 10.1002/cpa.21583.  Google Scholar

[26]

J. Lin and S. Ding, On the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158.  doi: 10.1002/mma.1548.  Google Scholar

[27]

Q. Liu and J. Zhao, A regularity criterion for the solution of the nematic liquid crystal flows in terms of $\dotB_{\infty,\infty}^{-1}$-norm,, J. Math. Anal. Appl., 407 (2013), 557.  doi: 10.1016/j.jmaa.2013.05.048.  Google Scholar

[28]

Q. Liu, T. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system,, J. Differ. Equ., 258 (2015), 1519.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[29]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[30]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[32]

W. Tan and Z. Yin, Global existence in critical space for liquid crystal flows in $\mathbbR^N$,, preprint., ().   Google Scholar

[33]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[34]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

[1]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[2]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[3]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[4]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[5]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[6]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[7]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[8]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[9]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[10]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[11]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[12]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[13]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[14]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[15]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[16]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[17]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[18]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[19]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[20]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]