January  2016, 36(1): 371-402. doi: 10.3934/dcds.2016.36.371

Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework

1. 

Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

3. 

College of Science, Northwest A&F University, Yangling, Shaanxi 712100

Received  September 2014 Revised  April 2015 Published  June 2015

In this paper, we consider the well-posedness of the Cauchy problem of the 3D incompressible nematic liquid crystal system with initial data in the critical Besov space $\dot{B}^{\frac{3}{p}-1}_{p,1}(\mathbb{R}^{3})\times \dot{B}^{\frac{3}{q}}_{q,1}(\mathbb{R}^{3})$ with $1< p<\infty$, $1\leq q<\infty$ and \begin{align*} -\min\{\frac{1}{3},\frac{1}{2p}\}\leq \frac{1}{q}-\frac{1}{p}\leq \frac{1}{3}. \end{align*} In particular, if we impose the restrictive condition $1< p<6$, we prove that there exist two positive constants $C_{0}$ and $c_{0}$ such that the nematic liquid crystal system has a unique global solution with initial data $(u_{0},d_{0}) = (u^{h}_{0}, u^{3}_{0}, d_{0})$ which satisfies \begin{align*} ((1+\frac{1}{\nu\mu})\|d_{0}-\overline{d}_{0}\|_{\dot{B}^{\frac{3}{q}}_{q,1}}+ \frac{1}{\nu}\|u_{0}^{h}\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}}) \exp\left\{\frac{C_{0}}{\nu^{2}}(\|u_{0}^{3}\|_{\dot{B}^{\frac{3}{p}-1}_{p,1}}+\frac{1}{\mu})^{2}\right\}\leq c_{0}, \end{align*} where $\overline{d}_{0}$ is a constant vector with $|\overline{d}_{0}|=1$. Here $\nu$ and $\mu$ are two positive viscosity constants.
Citation: Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions sutosimilaires éequations de Naveir-Stokes,, Séminaire Équations aux Dérivées Partielles de l'École Polytecnique, (): 1993.   Google Scholar

[3]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de damps de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differ. Equ., 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[6]

R. Danchin, Fourior Analysis Methods for PDE's,, , (2005).   Google Scholar

[7]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[8]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Advances in Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[11]

J. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in $L_{loc}^3 (\mathbbR^{3})$,, Arch. Rational Mech. Anal., 210 (2013), 177.  doi: 10.1007/s00205-013-0643-7.  Google Scholar

[12]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Cal. Var., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[13]

J. Huang, M. Paicu and P. Zhang, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-lipschitz velocity,, Arch. Rational Mech. Anal., 209 (2013), 631.  doi: 10.1007/s00205-013-0624-x.  Google Scholar

[14]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differ. Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

F. Leslie, Theory of flow phenomenum in liquid crystals., In The Theory of Liquid Crystals, 4 (1979), 1.   Google Scholar

[18]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman and Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[19]

X. Li and D. Wang, Global solution to the incompressible flow of liquid crystal,, J. Differ. Equ., 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[20]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[21]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[22]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Disc. Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[23]

F. Lin, J. Lin and C. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[24]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annal. Math., 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[25]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three,, , (2014).  doi: 10.1002/cpa.21583.  Google Scholar

[26]

J. Lin and S. Ding, On the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158.  doi: 10.1002/mma.1548.  Google Scholar

[27]

Q. Liu and J. Zhao, A regularity criterion for the solution of the nematic liquid crystal flows in terms of $\dotB_{\infty,\infty}^{-1}$-norm,, J. Math. Anal. Appl., 407 (2013), 557.  doi: 10.1016/j.jmaa.2013.05.048.  Google Scholar

[28]

Q. Liu, T. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system,, J. Differ. Equ., 258 (2015), 1519.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[29]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[30]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[32]

W. Tan and Z. Yin, Global existence in critical space for liquid crystal flows in $\mathbbR^N$,, preprint., ().   Google Scholar

[33]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[34]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions sutosimilaires éequations de Naveir-Stokes,, Séminaire Équations aux Dérivées Partielles de l'École Polytecnique, (): 1993.   Google Scholar

[3]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[4]

J. Y. Chemin and N. Lerner, Flot de damps de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differ. Equ., 121 (1995), 314.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[5]

J. Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529.  doi: 10.1007/s00220-007-0236-0.  Google Scholar

[6]

R. Danchin, Fourior Analysis Methods for PDE's,, , (2005).   Google Scholar

[7]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[8]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[9]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Advances in Math., 225 (2010), 1248.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[10]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space,, Commun. Pure Appl. Anal., 13 (2014), 225.   Google Scholar

[11]

J. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in $L_{loc}^3 (\mathbbR^{3})$,, Arch. Rational Mech. Anal., 210 (2013), 177.  doi: 10.1007/s00205-013-0643-7.  Google Scholar

[12]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Cal. Var., 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[13]

J. Huang, M. Paicu and P. Zhang, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-lipschitz velocity,, Arch. Rational Mech. Anal., 209 (2013), 631.  doi: 10.1007/s00205-013-0624-x.  Google Scholar

[14]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differ. Equ., 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

F. Leslie, Theory of flow phenomenum in liquid crystals., In The Theory of Liquid Crystals, 4 (1979), 1.   Google Scholar

[18]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman and Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[19]

X. Li and D. Wang, Global solution to the incompressible flow of liquid crystal,, J. Differ. Equ., 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[20]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[21]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[22]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Disc. Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[23]

F. Lin, J. Lin and C. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[24]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annal. Math., 31 (2010), 921.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[25]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three,, , (2014).  doi: 10.1002/cpa.21583.  Google Scholar

[26]

J. Lin and S. Ding, On the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158.  doi: 10.1002/mma.1548.  Google Scholar

[27]

Q. Liu and J. Zhao, A regularity criterion for the solution of the nematic liquid crystal flows in terms of $\dotB_{\infty,\infty}^{-1}$-norm,, J. Math. Anal. Appl., 407 (2013), 557.  doi: 10.1016/j.jmaa.2013.05.048.  Google Scholar

[28]

Q. Liu, T. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system,, J. Differ. Equ., 258 (2015), 1519.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[29]

M. Paicu, Équation anisotrope de Navier-Stokes dans des espaces critiques,, Rev. Mat. Iberoamericana, 21 (2005), 179.  doi: 10.4171/RMI/420.  Google Scholar

[30]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[31]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[32]

W. Tan and Z. Yin, Global existence in critical space for liquid crystal flows in $\mathbbR^N$,, preprint., ().   Google Scholar

[33]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[34]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]