July  2016, 36(7): 3719-3739. doi: 10.3934/dcds.2016.36.3719

On the interior approximate controllability for fractional wave equations

1. 

University of Puerto Rico, Río Piedras Campus,, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377, United States

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377

Received  June 2015 Revised  December 2015 Published  March 2016

We study the interior approximate controllability of fractional wave equations with the fractional Caputo derivative associated with a non-negative self-adjoint operator satisfying the unique continuation property. Some well-posedness and fine regularity properties of solutions to fractional wave and fractional backward wave type equations are also obtained. As an example of applications of our results we obtain that if $1<\alpha<2$ and $\Omega\subset\mathbb{R}^N$ is a smooth connected open set with boundary $\partial\Omega$, then the system $\mathbb D_t^\alpha u+A_Bu=f$ in $\Omega\times (0,T)$, $u(\cdot,0)=u_0$, $\partial_tu(\cdot,0)=u_1$, is approximately controllable for any $T>0$, $(u_0,u_1)\in V_{\frac{1}{\alpha}}\times L^2(\Omega)$, $\omega\subset\Omega$ any open set and any $f\in C_0^\infty(\omega\times (0,T))$. Here, $A_B$ can be the realization in $L^2(\Omega)$ of a symmetric non-negative uniformly elliptic operator with Dirichlet or Robin boundary conditions, or the realization in $L^2(\Omega)$ of the fractional Laplace operator $(-\Delta)^s$ ($0< s <1$) with the Dirichlet boundary condition ($u=0$ on $\mathbb{R}^N\setminus\Omega$) and the space $V_{\frac{1}{\alpha}}$ denotes the domain of the fractional power of order $\frac{1}{\alpha}$ of the operator $A_B$.
Citation: Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719
References:
[1]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys., 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[2]

R. Almeida and D. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives,, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1490.  doi: 10.1016/j.cnsns.2010.07.016.  Google Scholar

[3]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001).   Google Scholar

[4]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator,, , ().   Google Scholar

[5]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[6]

K. Fujishiro, Approximate controllability for fractional diffusion equations by Dirichlet boundary conditions,, , ().   Google Scholar

[7]

K. Fujishiro and M. Yamamoto, Approximate controllability for fractional diffusion equations by interior control,, Appl. Anal., 93 (2014), 1793.  doi: 10.1080/00036811.2013.850492.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[9]

R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order,, A. Carpinteri and F. Mainardi (Editors): Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 223.   Google Scholar

[10]

R. Gorenflo and F. Mainardi, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comp. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[11]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of time fractional diffusion equations,, Adv. Differential Equations, ().   Google Scholar

[12]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of fractional wave equations,, Submitted., ().   Google Scholar

[13]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE,, Mathematics of Control, ().   Google Scholar

[14]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, In Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri and F. Mainardi), 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[15]

K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, New York: John Wiley & Sons Inc., (1993).   Google Scholar

[16]

I. Podlubny, Fractional Differential Equations,, 198 Academic Press, 198 (1999).   Google Scholar

[17]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[18]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.   Google Scholar

[19]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[20]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, Potential Anal., 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[21]

M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains,, Commun. Pure Appl. Anal., 14 (2015), 2043.  doi: 10.3934/cpaa.2015.14.2043.  Google Scholar

[22]

M. Warma, The fractional Neumann and Robin boundary condition for the fractional $p$-Laplacian on open sets,, NoDEA Nonlinear Differential Equations Appl., 23 (2016).  doi: 10.1007/s00030-016-0354-5.  Google Scholar

[23]

E. Zuazua, Controllability of Partial Differential Equations,, 3ème cycle. Castro Urdiales, (2006).   Google Scholar

show all references

References:
[1]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys., 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[2]

R. Almeida and D. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives,, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1490.  doi: 10.1016/j.cnsns.2010.07.016.  Google Scholar

[3]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001).   Google Scholar

[4]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator,, , ().   Google Scholar

[5]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[6]

K. Fujishiro, Approximate controllability for fractional diffusion equations by Dirichlet boundary conditions,, , ().   Google Scholar

[7]

K. Fujishiro and M. Yamamoto, Approximate controllability for fractional diffusion equations by interior control,, Appl. Anal., 93 (2014), 1793.  doi: 10.1080/00036811.2013.850492.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[9]

R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order,, A. Carpinteri and F. Mainardi (Editors): Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 223.   Google Scholar

[10]

R. Gorenflo and F. Mainardi, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comp. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[11]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of time fractional diffusion equations,, Adv. Differential Equations, ().   Google Scholar

[12]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of fractional wave equations,, Submitted., ().   Google Scholar

[13]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE,, Mathematics of Control, ().   Google Scholar

[14]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, In Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri and F. Mainardi), 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[15]

K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, New York: John Wiley & Sons Inc., (1993).   Google Scholar

[16]

I. Podlubny, Fractional Differential Equations,, 198 Academic Press, 198 (1999).   Google Scholar

[17]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[18]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.   Google Scholar

[19]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[20]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, Potential Anal., 42 (2015), 499.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[21]

M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains,, Commun. Pure Appl. Anal., 14 (2015), 2043.  doi: 10.3934/cpaa.2015.14.2043.  Google Scholar

[22]

M. Warma, The fractional Neumann and Robin boundary condition for the fractional $p$-Laplacian on open sets,, NoDEA Nonlinear Differential Equations Appl., 23 (2016).  doi: 10.1007/s00030-016-0354-5.  Google Scholar

[23]

E. Zuazua, Controllability of Partial Differential Equations,, 3ème cycle. Castro Urdiales, (2006).   Google Scholar

[1]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[2]

Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3195-3210. doi: 10.3934/dcdsb.2018340

[3]

Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control & Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171

[4]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[5]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[6]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[7]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[8]

David Henry, Octavian G. Mustafa. Existence of solutions for a class of edge wave equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1113-1119. doi: 10.3934/dcdsb.2006.6.1113

[9]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[10]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[11]

Wei Dai, Jiahui Huang, Yu Qin, Bo Wang, Yanqin Fang. Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1389-1403. doi: 10.3934/dcds.2018117

[12]

Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148

[13]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[14]

Lorena Bociu, Irena Lasiecka. Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 835-860. doi: 10.3934/dcds.2008.22.835

[15]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[16]

Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025

[17]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[18]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020011

[19]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[20]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]