July  2016, 36(7): 3741-3774. doi: 10.3934/dcds.2016.36.3741

On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface

1. 

Division of Mathematics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan

2. 

Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555

3. 

Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223-8522, Japan

Received  May 2015 Revised  December 2015 Published  March 2016

In this paper, we prove a local in time unique existence theorem for some two phase problem of compressible and compressible barotropic viscous fluid flow without surface tension in the $L_p$ in time and the $L_q$ in space framework with $2< p <\infty$ and $N< q <\infty$ under the assumption that the initial domain is a uniform $W^{2-1/q}_q$ domain in $\mathbb{R}^N (N\ge 2)$. After transforming a unknown time dependent domain to the initial domain by the Lagrangian transformation, we solve the problem by the contraction mapping principle with the maximal $L_p$-$L_q$ regularity of the generalized Stokes operator for the compressible viscous fluid flow with free boundary condition. The key step of our method is to prove the existence of $\mathcal{R}$-bounded solution operator to resolvent problem corresponding to linearized problem. The $\mathcal{R}$-boundedness combined with Weis's operator valued Fourier multiplier theorem implies the generation of analytic semigroup and the maximal $L_p$-$L_q$ regularity theorem.
Citation: Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3741-3774. doi: 10.3934/dcds.2016.36.3741
References:
[1]

I. V. Denisova, Evolution of compressible and imcompressible fluids separated by a closed interface,, Interface Free Bound., 2 (2000), 283.  doi: 10.4171/IFB/21.  Google Scholar

[2]

I. V. Denisova and V. A. Solonnikov, Classical solvability of a problem on the motion of an isolated mass of a compressible liquid,, St. Petersburg Math. J., 14 (2003), 53.   Google Scholar

[3]

I. V. Denisova and V. A. Solonnikov, Classical solvability of a model problem in a half-space, related to the motion of an isolated mass of a compressible fluid,, J. Math. Sci., 115 (2003), 2753.  doi: 10.1023/A:1023365718404.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüß, $\mathcalR$-boundedness, Fourier multiplier and problems of elliptic and parabolic type,, Memories of AMS., 166 (2003).  doi: 10.1090/memo/0788.  Google Scholar

[5]

Y. Enomoto, L. v. Below and Y. Shibata, On some free boundary problem for a compressible barotopic viscous fluid flow,, Ann Univ Ferrara, 60 (2014), 55.  doi: 10.1007/s11565-013-0194-8.  Google Scholar

[6]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funkcial. Ekvac., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[7]

D. Götz and Y. Shibata, On the $\mathcalR$-boundedness of the solution operators in the study of the compressible viscous fluid with free boundary condition,, Asymptotic Analysis, 90 (2014), 207.  doi: 10.3233/ASY-141238.  Google Scholar

[8]

T. Kubo, Y. Shibata and K. Soga, On the $\mathcalR$-boundedness for the Two phase prolem: Compressible-incompressible model prolem,, Boundary Value Problems, 2014 (2014).  doi: 10.1186/s13661-014-0141-3.  Google Scholar

[9]

P. Scchi and A. Valli, A free boundary problem for compressible viscous fluid,, J. Reine Angew, 341 (1983), 1.  doi: 10.1515/crll.1983.341.1.  Google Scholar

[10]

Y. Shibata and S. Shimizu, On the $L_p$-$L_q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain,, J.Reine Angew. Math., 615 (2008), 157.  doi: 10.1515/CRELLE.2008.013.  Google Scholar

[11]

Y. Shibata and K. Tanaka, On a resolvent problem for the linealized system from the dynamical system describing the compressible viscous fluid motion,, Math. Mech. Appl. Sci., 27 (2004), 1579.  doi: 10.1002/mma.518.  Google Scholar

[12]

V. A. Solonnikov and A. Tani, Free boundary problem for a viscous compressible flow with the surface tension,, Constantin Carathéodory: An International Tribute (Ih. M. Rassias, (1991), 1270.   Google Scholar

[13]

G. Ströhmer, About the resolvent of an operator from fluid dynamics,, Math. Z., 194 (1987), 183.  doi: 10.1007/BF01161967.  Google Scholar

[14]

A. Tani, On the free boundary value problem for compressible viscous fluid motion,, J. Math. Kyoto Univ., 21 (1981), 839.   Google Scholar

[15]

A. Tani, Two-phase free boundary problem for compressible viscous fluid motion,, J. Math. Kyoto Univ., 24 (1984), 243.   Google Scholar

[16]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity,, Math. Ann., 319 (2001), 735.  doi: 10.1007/PL00004457.  Google Scholar

show all references

References:
[1]

I. V. Denisova, Evolution of compressible and imcompressible fluids separated by a closed interface,, Interface Free Bound., 2 (2000), 283.  doi: 10.4171/IFB/21.  Google Scholar

[2]

I. V. Denisova and V. A. Solonnikov, Classical solvability of a problem on the motion of an isolated mass of a compressible liquid,, St. Petersburg Math. J., 14 (2003), 53.   Google Scholar

[3]

I. V. Denisova and V. A. Solonnikov, Classical solvability of a model problem in a half-space, related to the motion of an isolated mass of a compressible fluid,, J. Math. Sci., 115 (2003), 2753.  doi: 10.1023/A:1023365718404.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüß, $\mathcalR$-boundedness, Fourier multiplier and problems of elliptic and parabolic type,, Memories of AMS., 166 (2003).  doi: 10.1090/memo/0788.  Google Scholar

[5]

Y. Enomoto, L. v. Below and Y. Shibata, On some free boundary problem for a compressible barotopic viscous fluid flow,, Ann Univ Ferrara, 60 (2014), 55.  doi: 10.1007/s11565-013-0194-8.  Google Scholar

[6]

Y. Enomoto and Y. Shibata, On the $\mathcalR$-sectoriality and its application to some mathematical study of the viscous compressible fluids,, Funkcial. Ekvac., 56 (2013), 441.  doi: 10.1619/fesi.56.441.  Google Scholar

[7]

D. Götz and Y. Shibata, On the $\mathcalR$-boundedness of the solution operators in the study of the compressible viscous fluid with free boundary condition,, Asymptotic Analysis, 90 (2014), 207.  doi: 10.3233/ASY-141238.  Google Scholar

[8]

T. Kubo, Y. Shibata and K. Soga, On the $\mathcalR$-boundedness for the Two phase prolem: Compressible-incompressible model prolem,, Boundary Value Problems, 2014 (2014).  doi: 10.1186/s13661-014-0141-3.  Google Scholar

[9]

P. Scchi and A. Valli, A free boundary problem for compressible viscous fluid,, J. Reine Angew, 341 (1983), 1.  doi: 10.1515/crll.1983.341.1.  Google Scholar

[10]

Y. Shibata and S. Shimizu, On the $L_p$-$L_q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain,, J.Reine Angew. Math., 615 (2008), 157.  doi: 10.1515/CRELLE.2008.013.  Google Scholar

[11]

Y. Shibata and K. Tanaka, On a resolvent problem for the linealized system from the dynamical system describing the compressible viscous fluid motion,, Math. Mech. Appl. Sci., 27 (2004), 1579.  doi: 10.1002/mma.518.  Google Scholar

[12]

V. A. Solonnikov and A. Tani, Free boundary problem for a viscous compressible flow with the surface tension,, Constantin Carathéodory: An International Tribute (Ih. M. Rassias, (1991), 1270.   Google Scholar

[13]

G. Ströhmer, About the resolvent of an operator from fluid dynamics,, Math. Z., 194 (1987), 183.  doi: 10.1007/BF01161967.  Google Scholar

[14]

A. Tani, On the free boundary value problem for compressible viscous fluid motion,, J. Math. Kyoto Univ., 21 (1981), 839.   Google Scholar

[15]

A. Tani, Two-phase free boundary problem for compressible viscous fluid motion,, J. Math. Kyoto Univ., 24 (1984), 243.   Google Scholar

[16]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity,, Math. Ann., 319 (2001), 735.  doi: 10.1007/PL00004457.  Google Scholar

[1]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[2]

Markus Grasmair. Well-posedness and convergence rates for sparse regularization with sublinear $l^q$ penalty term. Inverse Problems & Imaging, 2009, 3 (3) : 383-387. doi: 10.3934/ipi.2009.3.383

[3]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[4]

Samer Dweik. $ L^{p, q} $ estimates on the transport density. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3001-3009. doi: 10.3934/cpaa.2019134

[5]

Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905

[6]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[7]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[8]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[9]

Hugo Beirão da Veiga. Turbulence models, $p-$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 769-783. doi: 10.3934/cpaa.2009.8.769

[10]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[11]

Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure & Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569

[12]

Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483

[13]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[14]

Salvatore A. Marano, Sunra J. N. Mosconi. Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 279-291. doi: 10.3934/dcdss.2018015

[15]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[16]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[17]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[18]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[19]

Alonso Sepúlveda, Guilherme Tizziotti. Weierstrass semigroup and codes over the curve $y^q + y = x^{q^r + 1}$. Advances in Mathematics of Communications, 2014, 8 (1) : 67-72. doi: 10.3934/amc.2014.8.67

[20]

Yoshikazu Giga, Jürgen Saal. $L^1$ maximal regularity for the laplacian and applications. Conference Publications, 2011, 2011 (Special) : 495-504. doi: 10.3934/proc.2011.2011.495

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]