• Previous Article
    Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system
  • DCDS Home
  • This Issue
  • Next Article
    On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface
July  2016, 36(7): 3775-3789. doi: 10.3934/dcds.2016.36.3775

A Schechter type critical point result in annular conical domains of a Banach space and applications

1. 

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogălniceanu nr. 1, RO - 400084 Cluj-Napoca, Romania, Romania, Romania

Received  April 2015 Revised  November 2015 Published  March 2016

Using Ekeland's variational principle we obtain a critical point theorem of Schechter type for extrema of a functional in an annular conical domain of a Banach space. The result can be seen as a variational analogue of Krasnoselskii's fixed point theorem in cones and can be applied for the existence, localization and multiplicity of the positive solutions of variational problems. The result is then applied to $p$-Laplace equations, where the geometric condition on the boundary of the annular conical domain is established via a weak Harnack type inequality given in terms of the energetic norm. This method can be applied also to other homogeneous operators in order to obtain existence, multiplicity or infinitely many solutions for certain classes of quasilinear equations.
Citation: Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775
References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,, Bound. Value Probl., (2009).   Google Scholar

[2]

M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators,, Z. Angew. Math. Phys., 54 (2003), 771.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[3]

F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential,, J. Math. Anal. Appl., 397 (2013), 800.  doi: 10.1016/j.jmaa.2012.08.008.  Google Scholar

[4]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N.S.), 58 (2001), 339.   Google Scholar

[5]

J. Diestel, Geometry of Banach Spaces - Selected Topics,, Lecture Notes in Mathematics, (1975).   Google Scholar

[6]

I. Ekeland, Nonconvex minimization problems,, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 443.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[7]

F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term,, Discrete Contin. Dyn. Syst., 18 (2007), 107.  doi: 10.3934/dcds.2007.18.107.  Google Scholar

[8]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian,, Proc. Amer. Math. Soc., 137 (2009), 247.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[9]

M. Frigon, On a new notion of linking and application to elliptic problems at resonance,, J. Differential Equations, 153 (1999), 96.  doi: 10.1006/jdeq.1998.3540.  Google Scholar

[10]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[11]

R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un et la resolution par penalisation-dualité d'une classe de problemes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41.   Google Scholar

[12]

D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma,, Differential Integral Equations, 1 (1988), 351.   Google Scholar

[13]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, (1964).   Google Scholar

[14]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^N$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[15]

L. Ma, Mountain pass on a closed convex set,, J. Math. Anal. Appl., 205 (1997), 531.  doi: 10.1006/jmaa.1997.5227.  Google Scholar

[16]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the $p$-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[17]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[18]

R. Precup, The Leray-Schauder boundary condition in critical point theory,, Nonlinear Anal., 71 (2009), 3218.  doi: 10.1016/j.na.2009.01.195.  Google Scholar

[19]

R. Precup, On a bounded critical point theorem of Schechter,, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 87.   Google Scholar

[20]

R. Precup, Critical point localization theorems via Ekeland's variational principle,, Dynam. Systems Appl., 22 (2013), 355.   Google Scholar

[21]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[22]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000), 401.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[23]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian,, Bull. London Math. Soc., 33 (2001), 331.  doi: 10.1017/S0024609301008001.  Google Scholar

[24]

J. Saint Raymond, On the multiplicity of solutions of the equation $-\Delta u=\lambda f(u),$, J. Differential Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[25]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications,, Trans. Amer. Math. Soc., 331 (1992), 681.  doi: 10.1090/S0002-9947-1992-1064270-1.  Google Scholar

[26]

M. Schechter, Linking Methods in Critical Point Theory,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-1596-7.  Google Scholar

show all references

References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,, Bound. Value Probl., (2009).   Google Scholar

[2]

M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators,, Z. Angew. Math. Phys., 54 (2003), 771.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[3]

F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential,, J. Math. Anal. Appl., 397 (2013), 800.  doi: 10.1016/j.jmaa.2012.08.008.  Google Scholar

[4]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N.S.), 58 (2001), 339.   Google Scholar

[5]

J. Diestel, Geometry of Banach Spaces - Selected Topics,, Lecture Notes in Mathematics, (1975).   Google Scholar

[6]

I. Ekeland, Nonconvex minimization problems,, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 443.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[7]

F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term,, Discrete Contin. Dyn. Syst., 18 (2007), 107.  doi: 10.3934/dcds.2007.18.107.  Google Scholar

[8]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian,, Proc. Amer. Math. Soc., 137 (2009), 247.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[9]

M. Frigon, On a new notion of linking and application to elliptic problems at resonance,, J. Differential Equations, 153 (1999), 96.  doi: 10.1006/jdeq.1998.3540.  Google Scholar

[10]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[11]

R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un et la resolution par penalisation-dualité d'une classe de problemes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41.   Google Scholar

[12]

D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma,, Differential Integral Equations, 1 (1988), 351.   Google Scholar

[13]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, (1964).   Google Scholar

[14]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^N$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[15]

L. Ma, Mountain pass on a closed convex set,, J. Math. Anal. Appl., 205 (1997), 531.  doi: 10.1006/jmaa.1997.5227.  Google Scholar

[16]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the $p$-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[17]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[18]

R. Precup, The Leray-Schauder boundary condition in critical point theory,, Nonlinear Anal., 71 (2009), 3218.  doi: 10.1016/j.na.2009.01.195.  Google Scholar

[19]

R. Precup, On a bounded critical point theorem of Schechter,, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 87.   Google Scholar

[20]

R. Precup, Critical point localization theorems via Ekeland's variational principle,, Dynam. Systems Appl., 22 (2013), 355.   Google Scholar

[21]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[22]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000), 401.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[23]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian,, Bull. London Math. Soc., 33 (2001), 331.  doi: 10.1017/S0024609301008001.  Google Scholar

[24]

J. Saint Raymond, On the multiplicity of solutions of the equation $-\Delta u=\lambda f(u),$, J. Differential Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[25]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications,, Trans. Amer. Math. Soc., 331 (1992), 681.  doi: 10.1090/S0002-9947-1992-1064270-1.  Google Scholar

[26]

M. Schechter, Linking Methods in Critical Point Theory,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-1596-7.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]