• Previous Article
    Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system
  • DCDS Home
  • This Issue
  • Next Article
    On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface
July  2016, 36(7): 3775-3789. doi: 10.3934/dcds.2016.36.3775

A Schechter type critical point result in annular conical domains of a Banach space and applications

1. 

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogălniceanu nr. 1, RO - 400084 Cluj-Napoca, Romania, Romania, Romania

Received  April 2015 Revised  November 2015 Published  March 2016

Using Ekeland's variational principle we obtain a critical point theorem of Schechter type for extrema of a functional in an annular conical domain of a Banach space. The result can be seen as a variational analogue of Krasnoselskii's fixed point theorem in cones and can be applied for the existence, localization and multiplicity of the positive solutions of variational problems. The result is then applied to $p$-Laplace equations, where the geometric condition on the boundary of the annular conical domain is established via a weak Harnack type inequality given in terms of the energetic norm. This method can be applied also to other homogeneous operators in order to obtain existence, multiplicity or infinitely many solutions for certain classes of quasilinear equations.
Citation: Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775
References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,, Bound. Value Probl., (2009).   Google Scholar

[2]

M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators,, Z. Angew. Math. Phys., 54 (2003), 771.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[3]

F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential,, J. Math. Anal. Appl., 397 (2013), 800.  doi: 10.1016/j.jmaa.2012.08.008.  Google Scholar

[4]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N.S.), 58 (2001), 339.   Google Scholar

[5]

J. Diestel, Geometry of Banach Spaces - Selected Topics,, Lecture Notes in Mathematics, (1975).   Google Scholar

[6]

I. Ekeland, Nonconvex minimization problems,, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 443.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[7]

F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term,, Discrete Contin. Dyn. Syst., 18 (2007), 107.  doi: 10.3934/dcds.2007.18.107.  Google Scholar

[8]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian,, Proc. Amer. Math. Soc., 137 (2009), 247.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[9]

M. Frigon, On a new notion of linking and application to elliptic problems at resonance,, J. Differential Equations, 153 (1999), 96.  doi: 10.1006/jdeq.1998.3540.  Google Scholar

[10]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[11]

R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un et la resolution par penalisation-dualité d'une classe de problemes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41.   Google Scholar

[12]

D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma,, Differential Integral Equations, 1 (1988), 351.   Google Scholar

[13]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, (1964).   Google Scholar

[14]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^N$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[15]

L. Ma, Mountain pass on a closed convex set,, J. Math. Anal. Appl., 205 (1997), 531.  doi: 10.1006/jmaa.1997.5227.  Google Scholar

[16]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the $p$-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[17]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[18]

R. Precup, The Leray-Schauder boundary condition in critical point theory,, Nonlinear Anal., 71 (2009), 3218.  doi: 10.1016/j.na.2009.01.195.  Google Scholar

[19]

R. Precup, On a bounded critical point theorem of Schechter,, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 87.   Google Scholar

[20]

R. Precup, Critical point localization theorems via Ekeland's variational principle,, Dynam. Systems Appl., 22 (2013), 355.   Google Scholar

[21]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[22]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000), 401.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[23]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian,, Bull. London Math. Soc., 33 (2001), 331.  doi: 10.1017/S0024609301008001.  Google Scholar

[24]

J. Saint Raymond, On the multiplicity of solutions of the equation $-\Delta u=\lambda f(u),$, J. Differential Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[25]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications,, Trans. Amer. Math. Soc., 331 (1992), 681.  doi: 10.1090/S0002-9947-1992-1064270-1.  Google Scholar

[26]

M. Schechter, Linking Methods in Critical Point Theory,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-1596-7.  Google Scholar

show all references

References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,, Bound. Value Probl., (2009).   Google Scholar

[2]

M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators,, Z. Angew. Math. Phys., 54 (2003), 771.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[3]

F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential,, J. Math. Anal. Appl., 397 (2013), 800.  doi: 10.1016/j.jmaa.2012.08.008.  Google Scholar

[4]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N.S.), 58 (2001), 339.   Google Scholar

[5]

J. Diestel, Geometry of Banach Spaces - Selected Topics,, Lecture Notes in Mathematics, (1975).   Google Scholar

[6]

I. Ekeland, Nonconvex minimization problems,, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 443.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[7]

F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term,, Discrete Contin. Dyn. Syst., 18 (2007), 107.  doi: 10.3934/dcds.2007.18.107.  Google Scholar

[8]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian,, Proc. Amer. Math. Soc., 137 (2009), 247.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[9]

M. Frigon, On a new notion of linking and application to elliptic problems at resonance,, J. Differential Equations, 153 (1999), 96.  doi: 10.1006/jdeq.1998.3540.  Google Scholar

[10]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[11]

R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un et la resolution par penalisation-dualité d'une classe de problemes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41.   Google Scholar

[12]

D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma,, Differential Integral Equations, 1 (1988), 351.   Google Scholar

[13]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, (1964).   Google Scholar

[14]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^N$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[15]

L. Ma, Mountain pass on a closed convex set,, J. Math. Anal. Appl., 205 (1997), 531.  doi: 10.1006/jmaa.1997.5227.  Google Scholar

[16]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the $p$-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[17]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[18]

R. Precup, The Leray-Schauder boundary condition in critical point theory,, Nonlinear Anal., 71 (2009), 3218.  doi: 10.1016/j.na.2009.01.195.  Google Scholar

[19]

R. Precup, On a bounded critical point theorem of Schechter,, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 87.   Google Scholar

[20]

R. Precup, Critical point localization theorems via Ekeland's variational principle,, Dynam. Systems Appl., 22 (2013), 355.   Google Scholar

[21]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[22]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000), 401.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[23]

B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian,, Bull. London Math. Soc., 33 (2001), 331.  doi: 10.1017/S0024609301008001.  Google Scholar

[24]

J. Saint Raymond, On the multiplicity of solutions of the equation $-\Delta u=\lambda f(u),$, J. Differential Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[25]

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications,, Trans. Amer. Math. Soc., 331 (1992), 681.  doi: 10.1090/S0002-9947-1992-1064270-1.  Google Scholar

[26]

M. Schechter, Linking Methods in Critical Point Theory,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-1596-7.  Google Scholar

[1]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[2]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[3]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[4]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[5]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[6]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[7]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[8]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[9]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[10]

Anna Maria Candela, Giuliana Palmieri. Some abstract critical point theorems and applications. Conference Publications, 2009, 2009 (Special) : 133-142. doi: 10.3934/proc.2009.2009.133

[11]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[12]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[13]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[14]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[15]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[16]

Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569

[17]

Urszula Foryś, Yuri Kheifetz, Yuri Kogan. Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 511-525. doi: 10.3934/mbe.2005.2.511

[18]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[19]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[20]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]