    July  2016, 36(7): 3791-3810. doi: 10.3934/dcds.2016.36.3791

## Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system

 1 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China 2 School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116

Received  May 2015 Revised  November 2015 Published  March 2016

This paper is concerned with the properties of solutions for the weighted Hardy-Littlewood-Sobolev type integral system \begin{equation} \left \{ \begin{array}{l} u(x) = \frac{1}{|x|^{\alpha}}\int_{R^{n}} \frac{v^q(y)}{|y|^{\beta}|x-y|^{\lambda}} dy,\\ v(x) = \frac{1}{|x|^{\beta}}\int_{R^{n}} \frac{u^p(y)}{|y|^{\alpha}|x-y|^{\lambda}} dy \end{array} \right.                                                                              （1） \end{equation} and the fractional order partial differential system \begin{equation} \label{PDE} \left\{\begin{array}{ll} (-\Delta)^{\frac{n-\lambda}{2}}(|x|^{\alpha}u(x)) =|x|^{-\beta} v^{q}(x), \\ (-\Delta)^{\frac{n-\lambda}{2}}(|x|^{\beta}v(x)) =|x|^{-\alpha} u^p(x). \end{array}                                                                       （2） \right. \end{equation} Here $x \in R^n \setminus \{0\}$. Due to $0 < p, q < \infty$, we need more complicated analytical techniques to handle the case $0< p <1$ or $0< q <1$. We first establish the equivalence of integral system (1) and fractional order partial differential system (2). For integral system (1), we prove that the integrable solutions are locally bounded. In addition, we also show that the positive locally bounded solutions are symmetric and decreasing about some axis by means of the method of moving planes in integral forms introduced by Chen-Li-Ou. Thus, the equivalence implies the positive solutions of the PDE system, also have the corresponding properties. This paper extends previous results obtained by other authors to the general case.
Citation: Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791
##### References:
  W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar  W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, Commun. Pure Appl. Anal., 12(6) (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977). Google Scholar  F. Hang, On the integral systems related to HLS inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar  C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar  Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-011-0450-7. Google Scholar  Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 30 (2014), 547.  doi: 10.3934/dcds.2013.33.1987.  Google Scholar  Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar  C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar  M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498.  doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar  E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. Google Scholar  J. Wei and X. Xu, Classification of solutions of highter order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

show all references

##### References:
  W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar  W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, Commun. Pure Appl. Anal., 12(6) (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977). Google Scholar  F. Hang, On the integral systems related to HLS inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar  C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar  Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-011-0450-7. Google Scholar  Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 30 (2014), 547.  doi: 10.3934/dcds.2013.33.1987.  Google Scholar  Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar  C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar  M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498.  doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar  E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. Google Scholar  J. Wei and X. Xu, Classification of solutions of highter order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar
  Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057  Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164  Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018  Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987  Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027  Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018  Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951  Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008  Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653  Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935  Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235  Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082  Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015  Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171  Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015  Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925  Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121  Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879  Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041  Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

2018 Impact Factor: 1.143