July  2016, 36(7): 3791-3810. doi: 10.3934/dcds.2016.36.3791

Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116

Received  May 2015 Revised  November 2015 Published  March 2016

This paper is concerned with the properties of solutions for the weighted Hardy-Littlewood-Sobolev type integral system \begin{equation} \left \{ \begin{array}{l} u(x) = \frac{1}{|x|^{\alpha}}\int_{R^{n}} \frac{v^q(y)}{|y|^{\beta}|x-y|^{\lambda}} dy,\\ v(x) = \frac{1}{|x|^{\beta}}\int_{R^{n}} \frac{u^p(y)}{|y|^{\alpha}|x-y|^{\lambda}} dy \end{array} \right.                                                                              (1) \end{equation} and the fractional order partial differential system \begin{equation} \label{PDE} \left\{\begin{array}{ll} (-\Delta)^{\frac{n-\lambda}{2}}(|x|^{\alpha}u(x)) =|x|^{-\beta} v^{q}(x), \\ (-\Delta)^{\frac{n-\lambda}{2}}(|x|^{\beta}v(x)) =|x|^{-\alpha} u^p(x). \end{array}                                                                       (2) \right. \end{equation} Here $x \in R^n \setminus \{0\}$. Due to $0 < p, q < \infty$, we need more complicated analytical techniques to handle the case $0< p <1$ or $0< q <1$. We first establish the equivalence of integral system (1) and fractional order partial differential system (2). For integral system (1), we prove that the integrable solutions are locally bounded. In addition, we also show that the positive locally bounded solutions are symmetric and decreasing about some axis by means of the method of moving planes in integral forms introduced by Chen-Li-Ou. Thus, the equivalence implies the positive solutions of the PDE system, also have the corresponding properties. This paper extends previous results obtained by other authors to the general case.
Citation: Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791
References:
[1]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[2]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, Commun. Pure Appl. Anal., 12(6) (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[3]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[4]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977).   Google Scholar

[5]

F. Hang, On the integral systems related to HLS inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[6]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[7]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[8]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[9]

Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 30 (2014), 547.  doi: 10.3934/dcds.2013.33.1987.  Google Scholar

[10]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[12]

M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498.  doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar

[13]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

[14]

J. Wei and X. Xu, Classification of solutions of highter order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

show all references

References:
[1]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[2]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, Commun. Pure Appl. Anal., 12(6) (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[3]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[4]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977).   Google Scholar

[5]

F. Hang, On the integral systems related to HLS inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[6]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[7]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[8]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[9]

Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 30 (2014), 547.  doi: 10.3934/dcds.2013.33.1987.  Google Scholar

[10]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[12]

M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498.  doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar

[13]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

[14]

J. Wei and X. Xu, Classification of solutions of highter order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]