July  2016, 36(7): 3811-3843. doi: 10.3934/dcds.2016.36.3811

The Gardner equation and the stability of multi-kink solutions of the mKdV equation

1. 

CNRS and Departamento de Ingeniería Matemática y CMM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile

Received  May 2015 Revised  November 2015 Published  March 2016

Multi-kink solutions of the defocusing, modified Korteweg-de Vries equation (mKdV) found by Grosse [22,23] are shown to be globally $H^1$-stable, and asymptotically stable. Stability in the one-kink case was previously established by Zhidkov [51] and Merle-Vega [41]. The proof uses transformations linking the mKdV equation with focusing, Gardner-like equations, where stability and asymptotic stability in the energy space are known. We generalize our results by considering the existence, uniqueness and the dynamics of generalized multi-kinks of defocusing, non-integrable gKdV equations, showing the inelastic character of the kink-kink collision in some regimes.
Citation: Claudio Muñoz. The Gardner equation and the stability of multi-kink solutions of the mKdV equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3811-3843. doi: 10.3934/dcds.2016.36.3811
References:
[1]

M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,, London Mathematical Society Lecture Note Series, (1991).  doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, SIAM Studies in Applied Mathematics, (1981).   Google Scholar

[3]

M. A. Alejo and C. Muñoz, Nonlinear Stability of mKdV breathers,, Communications in Mathematical Physics, 324 (2013), 233.  doi: 10.1007/s00220-013-1792-0.  Google Scholar

[4]

M. A. Alejo and C. Muñoz, Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers,, Analysis and PDE, 8 (2015), 629.  doi: 10.2140/apde.2015.8.629.  Google Scholar

[5]

M. A. Alejo and C. Muñoz, On the variational structure of breather solutions,, preprint, ().   Google Scholar

[6]

M. A. Alejo, C. Muñoz and L. Vega, The Gardner equation and the $L^2$-stability of the $N$-soliton solutions of the Korteweg-de Vries equation,, Transactions of the AMS., 365 (2013), 195.  doi: 10.1090/S0002-9947-2012-05548-6.  Google Scholar

[7]

T. B. Benjamin, The stability of solitary waves,, Proc. Roy. Soc. London A, 328 (1972), 153.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[8]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 347.  doi: 10.1007/BF00250555.  Google Scholar

[9]

F. Béthuel, P. Gravejat, J.-C. Saut and D. Smets, Orbital stability of the black soliton to the Gross-Pitaevskii equation,, Indiana Univ. Math. J., 57 (2008), 2611.  doi: 10.1512/iumj.2008.57.3632.  Google Scholar

[10]

J. L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type,, Proc. Roy. Soc. London, 411 (1987), 395.  doi: 10.1098/rspa.1987.0073.  Google Scholar

[11]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[12]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, J. Amer. Math. Soc., 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[13]

V. Combet, Multi-soliton solutions for the supercritical gKdV equations,, Comm. PDE, 36 (2011), 380.  doi: 10.1080/03605302.2010.503770.  Google Scholar

[14]

R. Côte, Y. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations,, Rev. Mat. Iberoam., 27 (2011), 273.  doi: 10.4171/RMI/636.  Google Scholar

[15]

S. Cuccagna, On asymptotic stability in 3D of kinks for the $\phi^4$ model,, Trans. Amer. Math. Soc., 360 (2008), 2581.  doi: 10.1090/S0002-9947-07-04356-5.  Google Scholar

[16]

T. Dauxois and M. Peyrard, Physics of Solitons,, Cambridge University Press, (2006).   Google Scholar

[17]

C. S. Gardner, M. D. Kruskal and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.  doi: 10.1063/1.1664701.  Google Scholar

[18]

P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation,, J. Math. Pures Appl. (9), 91 (2009), 178.  doi: 10.1016/j.matpur.2008.09.009.  Google Scholar

[19]

F. Gesztesy and B. Simon, Constructing solutions of the mKdV-equation,, J. Funct. Anal., 89 (1990), 53.  doi: 10.1016/0022-1236(90)90003-4.  Google Scholar

[20]

F. Gesztesy, W. Schweiger and B. Simon, Commutation methods applied to the mKdV-equation,, Trans. AMS, 324 (1991), 465.  doi: 10.1090/S0002-9947-1991-1029000-7.  Google Scholar

[21]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[22]

H. Grosse, Solitons of the modified KdV equation,, Lett. Math. Phys., 8 (1984), 313.  doi: 10.1007/BF00400502.  Google Scholar

[23]

H. Grosse, New solitons connected to the Dirac equation,, Phys. Rep., 134 (1986), 297.  doi: 10.1016/0370-1573(86)90053-0.  Google Scholar

[24]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[25]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[26]

D. B. Henry, J. F. Perez and W. F. Wreszinski, Stability theory for solitary-wave solutions of scalar field equations,, Comm. Math. Phys., 85 (1982), 351.  doi: 10.1007/BF01208719.  Google Scholar

[27]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[28]

C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations,, Duke Math. J., 106 (2001), 617.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[29]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic ginzburg-landau equations,, Arch. Ration. Mech. Anal., 202 (2011), 213.  doi: 10.1007/s00205-011-0415-1.  Google Scholar

[30]

M. Kowalczyk, Y. Martel and C. Muñoz, Kink dynamics in the $\varphi^4$ model: Asymptotic stability for odd perturbations in the energy space,, preprint, ().   Google Scholar

[31]

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves,, Comm. Pure Appl. Math., 21 (1968), 467.  doi: 10.1002/cpa.3160210503.  Google Scholar

[32]

J. H. Maddocks and R. L. Sachs, On the stability of KdV multi-solitons,, Comm. Pure Appl. Math., 46 (1993), 867.  doi: 10.1002/cpa.3160460604.  Google Scholar

[33]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, Amer. J. Math., 127 (2005), 1103.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[34]

Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations,, Arch. Ration. Mech. Anal., 157 (2001), 219.  doi: 10.1007/s002050100138.  Google Scholar

[35]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited,, Nonlinearity, 18 (2005), 55.  doi: 10.1088/0951-7715/18/1/004.  Google Scholar

[36]

Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation,, Ann. of Math. (2), 174 (2011), 757.  doi: 10.4007/annals.2011.174.2.2.  Google Scholar

[37]

Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations,, Comm. Math. Phys., 286 (2009), 39.  doi: 10.1007/s00220-008-0685-0.  Google Scholar

[38]

Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation,, Invent. Math., 183 (2011), 563.  doi: 10.1007/s00222-010-0283-6.  Google Scholar

[39]

Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity,, Math. Ann., 341 (2008), 391.  doi: 10.1007/s00208-007-0194-z.  Google Scholar

[40]

Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations,, Comm. Math. Phys., 231 (2002), 347.  doi: 10.1007/s00220-002-0723-2.  Google Scholar

[41]

F. Merle and L. Vega, $L^2$ stability of solitons for KdV equation,, Int. Math. Res. Not., (2003), 735.  doi: 10.1155/S1073792803208060.  Google Scholar

[42]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.  doi: 10.1063/1.1664700.  Google Scholar

[43]

C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity,, Int. Math. Research Notices, 2010 (2010), 1624.  doi: 10.1093/imrn/rnp204.  Google Scholar

[44]

C. Muñoz, $L^2$-stability of Multi-solitons,, Séminaire EDP et Applications, (2011).   Google Scholar

[45]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305.  doi: 10.1007/BF02101705.  Google Scholar

[46]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 357.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[47]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[48]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics. Springer-Verlag, (1992).  doi: 10.1007/978-3-662-02753-0.  Google Scholar

[49]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure. Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[50]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[51]

P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory,, Lecture Notes in Mathematics, (1756).   Google Scholar

show all references

References:
[1]

M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,, London Mathematical Society Lecture Note Series, (1991).  doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, SIAM Studies in Applied Mathematics, (1981).   Google Scholar

[3]

M. A. Alejo and C. Muñoz, Nonlinear Stability of mKdV breathers,, Communications in Mathematical Physics, 324 (2013), 233.  doi: 10.1007/s00220-013-1792-0.  Google Scholar

[4]

M. A. Alejo and C. Muñoz, Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers,, Analysis and PDE, 8 (2015), 629.  doi: 10.2140/apde.2015.8.629.  Google Scholar

[5]

M. A. Alejo and C. Muñoz, On the variational structure of breather solutions,, preprint, ().   Google Scholar

[6]

M. A. Alejo, C. Muñoz and L. Vega, The Gardner equation and the $L^2$-stability of the $N$-soliton solutions of the Korteweg-de Vries equation,, Transactions of the AMS., 365 (2013), 195.  doi: 10.1090/S0002-9947-2012-05548-6.  Google Scholar

[7]

T. B. Benjamin, The stability of solitary waves,, Proc. Roy. Soc. London A, 328 (1972), 153.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[8]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 347.  doi: 10.1007/BF00250555.  Google Scholar

[9]

F. Béthuel, P. Gravejat, J.-C. Saut and D. Smets, Orbital stability of the black soliton to the Gross-Pitaevskii equation,, Indiana Univ. Math. J., 57 (2008), 2611.  doi: 10.1512/iumj.2008.57.3632.  Google Scholar

[10]

J. L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type,, Proc. Roy. Soc. London, 411 (1987), 395.  doi: 10.1098/rspa.1987.0073.  Google Scholar

[11]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[12]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, J. Amer. Math. Soc., 16 (2003), 705.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[13]

V. Combet, Multi-soliton solutions for the supercritical gKdV equations,, Comm. PDE, 36 (2011), 380.  doi: 10.1080/03605302.2010.503770.  Google Scholar

[14]

R. Côte, Y. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations,, Rev. Mat. Iberoam., 27 (2011), 273.  doi: 10.4171/RMI/636.  Google Scholar

[15]

S. Cuccagna, On asymptotic stability in 3D of kinks for the $\phi^4$ model,, Trans. Amer. Math. Soc., 360 (2008), 2581.  doi: 10.1090/S0002-9947-07-04356-5.  Google Scholar

[16]

T. Dauxois and M. Peyrard, Physics of Solitons,, Cambridge University Press, (2006).   Google Scholar

[17]

C. S. Gardner, M. D. Kruskal and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.  doi: 10.1063/1.1664701.  Google Scholar

[18]

P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation,, J. Math. Pures Appl. (9), 91 (2009), 178.  doi: 10.1016/j.matpur.2008.09.009.  Google Scholar

[19]

F. Gesztesy and B. Simon, Constructing solutions of the mKdV-equation,, J. Funct. Anal., 89 (1990), 53.  doi: 10.1016/0022-1236(90)90003-4.  Google Scholar

[20]

F. Gesztesy, W. Schweiger and B. Simon, Commutation methods applied to the mKdV-equation,, Trans. AMS, 324 (1991), 465.  doi: 10.1090/S0002-9947-1991-1029000-7.  Google Scholar

[21]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[22]

H. Grosse, Solitons of the modified KdV equation,, Lett. Math. Phys., 8 (1984), 313.  doi: 10.1007/BF00400502.  Google Scholar

[23]

H. Grosse, New solitons connected to the Dirac equation,, Phys. Rep., 134 (1986), 297.  doi: 10.1016/0370-1573(86)90053-0.  Google Scholar

[24]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[25]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, J. Nonlinear Sci., 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[26]

D. B. Henry, J. F. Perez and W. F. Wreszinski, Stability theory for solitary-wave solutions of scalar field equations,, Comm. Math. Phys., 85 (1982), 351.  doi: 10.1007/BF01208719.  Google Scholar

[27]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[28]

C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations,, Duke Math. J., 106 (2001), 617.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[29]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic ginzburg-landau equations,, Arch. Ration. Mech. Anal., 202 (2011), 213.  doi: 10.1007/s00205-011-0415-1.  Google Scholar

[30]

M. Kowalczyk, Y. Martel and C. Muñoz, Kink dynamics in the $\varphi^4$ model: Asymptotic stability for odd perturbations in the energy space,, preprint, ().   Google Scholar

[31]

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves,, Comm. Pure Appl. Math., 21 (1968), 467.  doi: 10.1002/cpa.3160210503.  Google Scholar

[32]

J. H. Maddocks and R. L. Sachs, On the stability of KdV multi-solitons,, Comm. Pure Appl. Math., 46 (1993), 867.  doi: 10.1002/cpa.3160460604.  Google Scholar

[33]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, Amer. J. Math., 127 (2005), 1103.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[34]

Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations,, Arch. Ration. Mech. Anal., 157 (2001), 219.  doi: 10.1007/s002050100138.  Google Scholar

[35]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited,, Nonlinearity, 18 (2005), 55.  doi: 10.1088/0951-7715/18/1/004.  Google Scholar

[36]

Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation,, Ann. of Math. (2), 174 (2011), 757.  doi: 10.4007/annals.2011.174.2.2.  Google Scholar

[37]

Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations,, Comm. Math. Phys., 286 (2009), 39.  doi: 10.1007/s00220-008-0685-0.  Google Scholar

[38]

Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation,, Invent. Math., 183 (2011), 563.  doi: 10.1007/s00222-010-0283-6.  Google Scholar

[39]

Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity,, Math. Ann., 341 (2008), 391.  doi: 10.1007/s00208-007-0194-z.  Google Scholar

[40]

Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations,, Comm. Math. Phys., 231 (2002), 347.  doi: 10.1007/s00220-002-0723-2.  Google Scholar

[41]

F. Merle and L. Vega, $L^2$ stability of solitons for KdV equation,, Int. Math. Res. Not., (2003), 735.  doi: 10.1155/S1073792803208060.  Google Scholar

[42]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.  doi: 10.1063/1.1664700.  Google Scholar

[43]

C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity,, Int. Math. Research Notices, 2010 (2010), 1624.  doi: 10.1093/imrn/rnp204.  Google Scholar

[44]

C. Muñoz, $L^2$-stability of Multi-solitons,, Séminaire EDP et Applications, (2011).   Google Scholar

[45]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305.  doi: 10.1007/BF02101705.  Google Scholar

[46]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 357.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[47]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[48]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics. Springer-Verlag, (1992).  doi: 10.1007/978-3-662-02753-0.  Google Scholar

[49]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure. Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[50]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[51]

P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory,, Lecture Notes in Mathematics, (1756).   Google Scholar

[1]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[2]

Rafael de la Rosa, María Santos Bruzón. Differential invariants of a generalized variable-coefficient Gardner equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 747-757. doi: 10.3934/dcdss.2018047

[3]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[4]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[5]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[6]

Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090

[7]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[8]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[9]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[10]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[11]

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811

[12]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[13]

Khaled El Dika, Luc Molinet. Stability of multi antipeakon-peakons profile. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 561-577. doi: 10.3934/dcdsb.2009.12.561

[14]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[15]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

[16]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[17]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[18]

Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242

[19]

Chunmei Zhang, Wenxue Li, Ke Wang. Graph-theoretic approach to stability of multi-group models with dispersal. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 259-280. doi: 10.3934/dcdsb.2015.20.259

[20]

O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]