July  2016, 36(7): 3845-3856. doi: 10.3934/dcds.2016.36.3845

Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433

Received  March 2015 Revised  November 2015 Published  March 2016

This paper deals with the global well-posedness of axisymmetric Navier-Stokes equations with swirl. We prove that there exists a global solution of Navier-Stokes equations under some weighted energy for a class of large anisotropic initial data slowly varying in the vertical variable.
Citation: Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845
References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).   Google Scholar

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.  doi: 10.1007/s002090100317.  Google Scholar

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[5]

Clay Mathematics Institute, Available, from: , ().   Google Scholar

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.  doi: 10.1002/cpa.20212.  Google Scholar

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.  doi: 10.4171/ZAA/903.  Google Scholar

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.   Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).   Google Scholar

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

show all references

References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).   Google Scholar

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.  doi: 10.1007/s002090100317.  Google Scholar

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[5]

Clay Mathematics Institute, Available, from: , ().   Google Scholar

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.  doi: 10.1002/cpa.20212.  Google Scholar

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.  doi: 10.4171/ZAA/903.  Google Scholar

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.   Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).   Google Scholar

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]