July  2016, 36(7): 3845-3856. doi: 10.3934/dcds.2016.36.3845

Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433

Received  March 2015 Revised  November 2015 Published  March 2016

This paper deals with the global well-posedness of axisymmetric Navier-Stokes equations with swirl. We prove that there exists a global solution of Navier-Stokes equations under some weighted energy for a class of large anisotropic initial data slowly varying in the vertical variable.
Citation: Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845
References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).   Google Scholar

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.  doi: 10.1007/s002090100317.  Google Scholar

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[5]

Clay Mathematics Institute, Available, from: , ().   Google Scholar

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.  doi: 10.1002/cpa.20212.  Google Scholar

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.  doi: 10.4171/ZAA/903.  Google Scholar

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.   Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).   Google Scholar

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

show all references

References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).   Google Scholar

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.  doi: 10.1007/s002090100317.  Google Scholar

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[5]

Clay Mathematics Institute, Available, from: , ().   Google Scholar

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.  doi: 10.1002/cpa.20212.  Google Scholar

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.  doi: 10.4171/ZAA/903.  Google Scholar

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.   Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).   Google Scholar

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

[1]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[2]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[3]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[4]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[5]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[6]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[7]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[8]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[9]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[10]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[11]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[12]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[13]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[14]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[15]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[16]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[17]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[18]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[19]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[20]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]