July  2016, 36(7): 3911-3925. doi: 10.3934/dcds.2016.36.3911

Hyperbolic periodic points for chain hyperbolic homoclinic classes

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871

2. 

School of Mathematical Sciences, Peking University, Beijing, 100871

Received  May 2015 Revised  January 2016 Published  March 2016

In this paper we establish a closing property and a hyperbolic closing property for thin trapped chain hyperbolic homoclinic classes with one dimensional center in partial hyperbolicity setting. Taking advantage of theses properties, we prove that the growth rate of the number of hyperbolic periodic points is equal to the topological entropy. We also obtain that the hyperbolic periodic measures are dense in the space of invariant measures.
Citation: Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911
References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377. Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189. Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673. doi: 10.1016/j.aim.2010.07.013. Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385. doi: 10.1007/s00222-014-0553-9. Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977). Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412. doi: 10.1017/etds.2014.126. Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137. Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901. doi: 10.3934/dcds.2013.33.2901. Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043. doi: 10.4171/JEMS/413. Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335. Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485. doi: 10.1016/j.anihpc.2005.01.001. Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268. Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99. doi: 10.1007/BF01404606. Google Scholar

show all references

References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377. Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189. Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673. doi: 10.1016/j.aim.2010.07.013. Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385. doi: 10.1007/s00222-014-0553-9. Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977). Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412. doi: 10.1017/etds.2014.126. Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137. Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901. doi: 10.3934/dcds.2013.33.2901. Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043. doi: 10.4171/JEMS/413. Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335. Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485. doi: 10.1016/j.anihpc.2005.01.001. Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268. Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99. doi: 10.1007/BF01404606. Google Scholar

[1]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[2]

Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

[3]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[4]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[5]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[6]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[7]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[8]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[9]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[10]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[13]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[14]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[15]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[16]

Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731

[17]

Shiva Moslemi, Abolfazl Mirzazadeh. Performance evaluation of four-stage blood supply chain with feedback variables using NDEA cross-efficiency and entropy measures under IER uncertainty. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 379-401. doi: 10.3934/naco.2017024

[18]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[19]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[20]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]