July  2016, 36(7): 3911-3925. doi: 10.3934/dcds.2016.36.3911

Hyperbolic periodic points for chain hyperbolic homoclinic classes

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871

2. 

School of Mathematical Sciences, Peking University, Beijing, 100871

Received  May 2015 Revised  January 2016 Published  March 2016

In this paper we establish a closing property and a hyperbolic closing property for thin trapped chain hyperbolic homoclinic classes with one dimensional center in partial hyperbolicity setting. Taking advantage of theses properties, we prove that the growth rate of the number of hyperbolic periodic points is equal to the topological entropy. We also obtain that the hyperbolic periodic measures are dense in the space of invariant measures.
Citation: Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911
References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.   Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.  doi: 10.1017/etds.2014.126.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.  doi: 10.3934/dcds.2013.33.2901.  Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.   Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.  doi: 10.1016/j.anihpc.2005.01.001.  Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

show all references

References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.   Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.  doi: 10.1017/etds.2014.126.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.  doi: 10.3934/dcds.2013.33.2901.  Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.   Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.  doi: 10.1016/j.anihpc.2005.01.001.  Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]