July  2016, 36(7): 4015-4025. doi: 10.3934/dcds.2016.36.4015

Planar quasi-homogeneous polynomial systems with a given weight degree

1. 

School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

Received  January 2015 Revised  January 2016 Published  March 2016

In this paper, we investigate a class of quasi-homogeneous polynomial systems with a given weight degree. Firstly, by some analytical skills, several properties about this kind of systems are derived and an algorithm can be established to obtain all possible explicit systems for a given weight degree. Then, we focus on center problems for such systems and provide some necessary conditions for the existence of centers. Finally, for a specific quasi-homogeneous polynomial system, we characterize its center and prove that the center is not isochronous.
Citation: Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015
References:
[1]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Advances in Mathematics, 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[2]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic systems in the plane,, J. Math. Anal. Appl., 147 (1990), 420.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[3]

T. Date and M. Lai, Canonical forms of real homogeneous quadratic transformations,, J. Math. Anal. Appl., 56 (1976), 650.  doi: 10.1016/0022-247X(76)90031-7.  Google Scholar

[4]

T. Date, Classification and analysis of two-dimensional homogeneous quadratic differential equations systems,, J. Differential Equations, 32 (1979), 311.  doi: 10.1016/0022-0396(79)90037-8.  Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theorey of Planar Polynomial Systems,, Springer, (2006).   Google Scholar

[6]

B. García, J. Llibre and J. S. Pérea del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Differential Equations, 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[7]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Differential Equations, 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[8]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[9]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[10]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane,, J. Math. Anal. Appl., 359 (2009), 722.  doi: 10.1016/j.jmaa.2009.06.036.  Google Scholar

[11]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers,, J. Dyn. Diff. Equat., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[12]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dynamics, 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[13]

P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Differential Equations, 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[14]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields,, J. Math. Anal. Appl., 397 (2013), 276.  doi: 10.1016/j.jmaa.2012.07.060.  Google Scholar

show all references

References:
[1]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Advances in Mathematics, 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[2]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic systems in the plane,, J. Math. Anal. Appl., 147 (1990), 420.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[3]

T. Date and M. Lai, Canonical forms of real homogeneous quadratic transformations,, J. Math. Anal. Appl., 56 (1976), 650.  doi: 10.1016/0022-247X(76)90031-7.  Google Scholar

[4]

T. Date, Classification and analysis of two-dimensional homogeneous quadratic differential equations systems,, J. Differential Equations, 32 (1979), 311.  doi: 10.1016/0022-0396(79)90037-8.  Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theorey of Planar Polynomial Systems,, Springer, (2006).   Google Scholar

[6]

B. García, J. Llibre and J. S. Pérea del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Differential Equations, 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[7]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Differential Equations, 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[8]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[9]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[10]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane,, J. Math. Anal. Appl., 359 (2009), 722.  doi: 10.1016/j.jmaa.2009.06.036.  Google Scholar

[11]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers,, J. Dyn. Diff. Equat., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[12]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dynamics, 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[13]

P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Differential Equations, 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[14]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields,, J. Math. Anal. Appl., 397 (2013), 276.  doi: 10.1016/j.jmaa.2012.07.060.  Google Scholar

[1]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[2]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[3]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[7]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[8]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[9]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[10]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[12]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[15]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[16]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[17]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[20]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]