July  2016, 36(7): 4027-4049. doi: 10.3934/dcds.2016.36.4027

Principal eigenvalues for some nonlocal eigenvalue problems and applications

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China, China

Received  April 2015 Revised  November 2015 Published  March 2016

This paper is concerned with the principal eigenvalues of some nonlocal operators. We first derive a result on the limit of certain sequences of principal eigenvalues associated with some nonlocal eigenvalue problems. Then, such a result is used to study the existence, uniqueness and asymptotic behavior of positive solutions to a nonlocal stationary problem with a parameter. Finally, the long-time behavior of the solutions of the corresponding nonlocal evolution equation and the asymptotic behavior of positive stationary solutions on parameter are discussed.
Citation: Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs,, AMS, (2010).  doi: 10.1090/surv/165.  Google Scholar

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Arch. Ration. Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[3]

P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[4]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[5]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal., 40 (1981), 1.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[6]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation,, J. Math. Pures Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[9]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[10]

C. Cortázar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions,, Israel J. Math., 170 (2009), 53.  doi: 10.1007/s11856-009-0019-8.  Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693.  doi: 10.1137/060676854.  Google Scholar

[12]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[13]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[14]

J. Coville, Nonlocal refuge model with a partial control,, Discrete Contin. Dyn. Syst., 35 (2015), 1421.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[15]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Ser. Math. Comput. Biol., (2003).  doi: 10.1002/0470871296.  Google Scholar

[16]

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations,, SIAM J. Math. Anal., 31 (1999), 1.  doi: 10.1137/S0036141099352844.  Google Scholar

[17]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Differential Equations, 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in Nonlinear Analysis, (2003), 153.   Google Scholar

[19]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Ration. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[20]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Commun. Pure Appl. Anal., 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[21]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[22]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299.   Google Scholar

[23]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pures Appl., 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[25]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size,, SIAM J. Appl. Math., 71 (2011), 1241.  doi: 10.1137/100788033.  Google Scholar

[26]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds,, J. Math. Biol., 65 (2012), 403.  doi: 10.1007/s00285-011-0465-x.  Google Scholar

[27]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal,, Discrete Contin. Dyn. Syst., 26 (2010), 551.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[28]

W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal,, Nonlinear Anal. Real World Appl., 11 (2010), 2302.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[29]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems,, J. Differential Equations, 127 (1996), 263.  doi: 10.1006/jdeq.1996.0070.  Google Scholar

[30]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Differential Equations, 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[31]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$,, Trans. Amer. Math. Soc., 331 (1992), 503.  doi: 10.2307/2154124.  Google Scholar

[32]

S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[33]

J. W. Sun, W. T. Li and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems,, Nonlinear Anal., 74 (2011), 3501.  doi: 10.1016/j.na.2011.02.034.  Google Scholar

[34]

J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics,, J. Differential Equations, 257 (2014), 1372.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[35]

J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy,, Discrete Contin. Dyn. Syst., 35 (2015), 3217.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[36]

Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[37]

Y. J. Sun, W. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[38]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, J. Differential Equations, 249 (2010), 747.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[39]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[40]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[41]

G. B. Zhang, W. T. Li and Y. J. Sun, Asymptotic behavior for nonlocal dispersal equations,, Nonlinear Anal., 72 (2010), 4466.  doi: 10.1016/j.na.2010.02.021.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs,, AMS, (2010).  doi: 10.1090/surv/165.  Google Scholar

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Arch. Ration. Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[3]

P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[4]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[5]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal., 40 (1981), 1.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[6]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation,, J. Math. Pures Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[9]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[10]

C. Cortázar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions,, Israel J. Math., 170 (2009), 53.  doi: 10.1007/s11856-009-0019-8.  Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693.  doi: 10.1137/060676854.  Google Scholar

[12]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[13]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[14]

J. Coville, Nonlocal refuge model with a partial control,, Discrete Contin. Dyn. Syst., 35 (2015), 1421.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[15]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Ser. Math. Comput. Biol., (2003).  doi: 10.1002/0470871296.  Google Scholar

[16]

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations,, SIAM J. Math. Anal., 31 (1999), 1.  doi: 10.1137/S0036141099352844.  Google Scholar

[17]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Differential Equations, 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in Nonlinear Analysis, (2003), 153.   Google Scholar

[19]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Ration. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[20]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Commun. Pure Appl. Anal., 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[21]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[22]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299.   Google Scholar

[23]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pures Appl., 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[25]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size,, SIAM J. Appl. Math., 71 (2011), 1241.  doi: 10.1137/100788033.  Google Scholar

[26]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds,, J. Math. Biol., 65 (2012), 403.  doi: 10.1007/s00285-011-0465-x.  Google Scholar

[27]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal,, Discrete Contin. Dyn. Syst., 26 (2010), 551.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[28]

W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal,, Nonlinear Anal. Real World Appl., 11 (2010), 2302.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[29]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems,, J. Differential Equations, 127 (1996), 263.  doi: 10.1006/jdeq.1996.0070.  Google Scholar

[30]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Differential Equations, 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[31]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$,, Trans. Amer. Math. Soc., 331 (1992), 503.  doi: 10.2307/2154124.  Google Scholar

[32]

S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[33]

J. W. Sun, W. T. Li and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems,, Nonlinear Anal., 74 (2011), 3501.  doi: 10.1016/j.na.2011.02.034.  Google Scholar

[34]

J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics,, J. Differential Equations, 257 (2014), 1372.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[35]

J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy,, Discrete Contin. Dyn. Syst., 35 (2015), 3217.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[36]

Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[37]

Y. J. Sun, W. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[38]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, J. Differential Equations, 249 (2010), 747.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[39]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[40]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[41]

G. B. Zhang, W. T. Li and Y. J. Sun, Asymptotic behavior for nonlocal dispersal equations,, Nonlinear Anal., 72 (2010), 4466.  doi: 10.1016/j.na.2010.02.021.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[10]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[20]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]