July  2016, 36(7): 4027-4049. doi: 10.3934/dcds.2016.36.4027

Principal eigenvalues for some nonlocal eigenvalue problems and applications

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China, China

Received  April 2015 Revised  November 2015 Published  March 2016

This paper is concerned with the principal eigenvalues of some nonlocal operators. We first derive a result on the limit of certain sequences of principal eigenvalues associated with some nonlocal eigenvalue problems. Then, such a result is used to study the existence, uniqueness and asymptotic behavior of positive solutions to a nonlocal stationary problem with a parameter. Finally, the long-time behavior of the solutions of the corresponding nonlocal evolution equation and the asymptotic behavior of positive stationary solutions on parameter are discussed.
Citation: Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs,, AMS, (2010).  doi: 10.1090/surv/165.  Google Scholar

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Arch. Ration. Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[3]

P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[4]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[5]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal., 40 (1981), 1.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[6]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation,, J. Math. Pures Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[9]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[10]

C. Cortázar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions,, Israel J. Math., 170 (2009), 53.  doi: 10.1007/s11856-009-0019-8.  Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693.  doi: 10.1137/060676854.  Google Scholar

[12]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[13]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[14]

J. Coville, Nonlocal refuge model with a partial control,, Discrete Contin. Dyn. Syst., 35 (2015), 1421.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[15]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Ser. Math. Comput. Biol., (2003).  doi: 10.1002/0470871296.  Google Scholar

[16]

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations,, SIAM J. Math. Anal., 31 (1999), 1.  doi: 10.1137/S0036141099352844.  Google Scholar

[17]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Differential Equations, 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in Nonlinear Analysis, (2003), 153.   Google Scholar

[19]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Ration. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[20]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Commun. Pure Appl. Anal., 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[21]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[22]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299.   Google Scholar

[23]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pures Appl., 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[25]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size,, SIAM J. Appl. Math., 71 (2011), 1241.  doi: 10.1137/100788033.  Google Scholar

[26]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds,, J. Math. Biol., 65 (2012), 403.  doi: 10.1007/s00285-011-0465-x.  Google Scholar

[27]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal,, Discrete Contin. Dyn. Syst., 26 (2010), 551.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[28]

W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal,, Nonlinear Anal. Real World Appl., 11 (2010), 2302.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[29]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems,, J. Differential Equations, 127 (1996), 263.  doi: 10.1006/jdeq.1996.0070.  Google Scholar

[30]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Differential Equations, 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[31]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$,, Trans. Amer. Math. Soc., 331 (1992), 503.  doi: 10.2307/2154124.  Google Scholar

[32]

S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[33]

J. W. Sun, W. T. Li and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems,, Nonlinear Anal., 74 (2011), 3501.  doi: 10.1016/j.na.2011.02.034.  Google Scholar

[34]

J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics,, J. Differential Equations, 257 (2014), 1372.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[35]

J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy,, Discrete Contin. Dyn. Syst., 35 (2015), 3217.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[36]

Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[37]

Y. J. Sun, W. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[38]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, J. Differential Equations, 249 (2010), 747.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[39]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[40]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[41]

G. B. Zhang, W. T. Li and Y. J. Sun, Asymptotic behavior for nonlocal dispersal equations,, Nonlinear Anal., 72 (2010), 4466.  doi: 10.1016/j.na.2010.02.021.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs,, AMS, (2010).  doi: 10.1090/surv/165.  Google Scholar

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Arch. Ration. Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[3]

P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[4]

P. Bates and G. Zhao, Existence, uniquenss, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[5]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal., 40 (1981), 1.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[6]

H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47 (1994), 47.  doi: 10.1002/cpa.3160470105.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation,, J. Math. Pures Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[9]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[10]

C. Cortázar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions,, Israel J. Math., 170 (2009), 53.  doi: 10.1007/s11856-009-0019-8.  Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693.  doi: 10.1137/060676854.  Google Scholar

[12]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[13]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[14]

J. Coville, Nonlocal refuge model with a partial control,, Discrete Contin. Dyn. Syst., 35 (2015), 1421.  doi: 10.3934/dcds.2015.35.1421.  Google Scholar

[15]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Ser. Math. Comput. Biol., (2003).  doi: 10.1002/0470871296.  Google Scholar

[16]

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations,, SIAM J. Math. Anal., 31 (1999), 1.  doi: 10.1137/S0036141099352844.  Google Scholar

[17]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Differential Equations, 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[18]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in Nonlinear Analysis, (2003), 153.   Google Scholar

[19]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Ration. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[20]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Commun. Pure Appl. Anal., 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[21]

J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.  doi: 10.1016/j.jde.2008.04.015.  Google Scholar

[22]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299.   Google Scholar

[23]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pures Appl., 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[25]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size,, SIAM J. Appl. Math., 71 (2011), 1241.  doi: 10.1137/100788033.  Google Scholar

[26]

Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds,, J. Math. Biol., 65 (2012), 403.  doi: 10.1007/s00285-011-0465-x.  Google Scholar

[27]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal,, Discrete Contin. Dyn. Syst., 26 (2010), 551.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[28]

W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal,, Nonlinear Anal. Real World Appl., 11 (2010), 2302.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[29]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems,, J. Differential Equations, 127 (1996), 263.  doi: 10.1006/jdeq.1996.0070.  Google Scholar

[30]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Differential Equations, 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[31]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$,, Trans. Amer. Math. Soc., 331 (1992), 503.  doi: 10.2307/2154124.  Google Scholar

[32]

S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[33]

J. W. Sun, W. T. Li and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems,, Nonlinear Anal., 74 (2011), 3501.  doi: 10.1016/j.na.2011.02.034.  Google Scholar

[34]

J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics,, J. Differential Equations, 257 (2014), 1372.  doi: 10.1016/j.jde.2014.05.005.  Google Scholar

[35]

J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic model with spatial degeneracy,, Discrete Contin. Dyn. Syst., 35 (2015), 3217.  doi: 10.3934/dcds.2015.35.3217.  Google Scholar

[36]

Y. J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity,, J. Differential Equations, 251 (2011), 551.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[37]

Y. J. Sun, W. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[38]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, J. Differential Equations, 249 (2010), 747.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[39]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[40]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[41]

G. B. Zhang, W. T. Li and Y. J. Sun, Asymptotic behavior for nonlocal dispersal equations,, Nonlinear Anal., 72 (2010), 4466.  doi: 10.1016/j.na.2010.02.021.  Google Scholar

[1]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[2]

Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665

[3]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[4]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[5]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[6]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[7]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[8]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[9]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

[10]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[11]

Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400

[12]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[13]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[14]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[15]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[16]

Haitao Yang. On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^n$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 187-198. doi: 10.3934/cpaa.2005.4.197

[17]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[18]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

[19]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[20]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]