\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Markov-Dyck shifts of vertex type

Abstract Related Papers Cited by
  • For a given finite directed graph $G$, there are two types of Markov-Dyck shifts, the Markov-Dyck shift $D_G^V$ of vertex type and the Markov-Dyck shift $D_G^E$ of edge type. It is shown that, if $G$ does not have multi-edges, the former is a finite-to-one factor of the latter, and they have the same topological entropy. An expression for the zeta function of a Markov-Dyck shift of vertex type is given. It is different from that of the Markov-Dyck shift of edge type.
    Mathematics Subject Classification: Primary: 37B10; Secondary: 46L05, 05A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M.-P. Béal, M. Blockelet and C. Dima, Sofic-Dick shifts, preprint, arXiv:1305.7413.

    [2]

    A. Costa and B. Steinberg, A categorical invariant of flow equivalence of shifts, Ergodic Theory and Dynamical Systems, 74 (2014), 44pp, arXiv:1304.3487.doi: 10.1017/etds.2014.74.

    [3]

    J. Cuntz, Simple $C^*$-algebras generated by isometries, Commun. Math. Phys., 57 (1977), 173-185.doi: 10.1007/BF01625776.

    [4]

    J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Inventions Math., 56 (1980), 251-268.doi: 10.1007/BF01390048.

    [5]

    E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999), 167-202.doi: 10.1016/S0012-365X(98)00371-9.

    [6]

    I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983.

    [7]

    T. Hamachi, K. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, J. Reine Angew. Math., 632 (2009), 37-61.doi: 10.1515/CRELLE.2009.049.

    [8]

    T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups, preprint, arXiv:1303.4158.

    [9]

    F. Harry, Line graphs, in Graph Theory, Massachusetts, Addison-Wesley, (1972), 71-83.

    [10]

    G. Keller, Circular codes, loop counting, and zeta-functions, J. Combinatorial Theory, 56 (1991), 75-83.doi: 10.1016/0097-3165(91)90023-A.

    [11]

    B. P. Kitchens, Symbolic Dynamics, Springer-Verlag, Berlin, Heidelberg and New York, 1998.doi: 10.1007/978-3-642-58822-8.

    [12]

    W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104.doi: 10.1007/BF01762180.

    [13]

    W. Krieger, On a syntactically defined invariant of symbolic dynamics, Ergodic Theory Dynam. Systems, 20 (2000), 501-516.doi: 10.1017/S0143385700000249.

    [14]

    W. Krieger, On subshifts and semigroups, Bull. London Math., 38 (2006), 617-624.doi: 10.1112/S0024609306018625.

    [15]

    W. Krieger and K. Matsumoto, Zeta functions and topological entropy of the Markov Dyck shifts, Münster J. Math., 4 (2011), 171-183.

    [16]

    W. Krieger and K. Matsumoto, Markov-Dyck shifts, neutral periodic points and topological conjugacy (tentative title), in preparation.

    [17]

    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302.

    [18]

    K. Matsumoto, Cuntz-Krieger algebras and a generalization of Catalan numbers, Int. J. Math., 24 (2013), 1350040, 31pp.doi: 10.1142/S0129167X13500407.

    [19]

    K. Matsumoto, $C^*$-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54.

    [20]

    R. P. Stanley, Enumerative Combinatrics I, Wadsworth & Brooks/Cole Advanced Books, Monterey, CA, 1986.doi: 10.1007/978-1-4615-9763-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return