July  2016, 36(7): 4051-4062. doi: 10.3934/dcds.2016.36.4051

Remarks on nonlinear elastic waves in the radial symmetry in 2-D

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433

Received  June 2015 Revised  November 2015 Published  March 2016

In this paper, we first give the explicit variational structure of the nonlinear elastic waves for isotropic, homogeneous, hyperelastic materials in 2-D. Based on this variational structure, we suggest a null condition which is a kind of structural condition on the nonlinearity in order to stop the formation of finite time singularities of local smooth solutions. In the radial symmetric case, inspired by Alinhac's work on 2-D quasilinear wave equations [S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math. 145 (2001) 597--618], we show that such null condition can ensure the global existence of smooth solutions with small initial data.
Citation: Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2-D. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4051-4062. doi: 10.3934/dcds.2016.36.4051
References:
[1]

R. Agemi, Global existence of nonlinear elastic waves,, Invent. Math., 142 (2000), 225.  doi: 10.1007/s002220000084.  Google Scholar

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597.  doi: 10.1007/s002220100165.  Google Scholar

[3]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations,, Progress in Nonlinear Differential Equations and their Applications, (1995).  doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, Comm. Pure Appl. Math., 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

P. G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity, vol. 20 of Studies in Mathematics and its Applications,, North-Holland Publishing Co., (1988).   Google Scholar

[6]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[7]

M. E. Gurtin, Topics in Finite Elasticity, vol. 35 of CBMS-NSF Regional Conference Series in Applied Mathematics,, Society for Industrial and Applied Mathematics (SIAM), (1981).   Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, in Pseudodifferential operators (Oberwolfach, (1986), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

A. Hoshiga, The initial value problems for quasi-linear wave equations in two space dimensions with small data,, Adv. Math. Sci. Appl., 5 (1995), 67.   Google Scholar

[10]

F. John, Formation of singularities in elastic waves,, in Trends and applications of pure mathematics to mechanics (Palaiseau, (1983), 194.  doi: 10.1007/3-540-12916-2_58.  Google Scholar

[11]

F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances,, Comm. Pure Appl. Math., 41 (1988), 615.  doi: 10.1002/cpa.3160410507.  Google Scholar

[12]

F. John, Nonlinear Wave Equations, Formation of Singularities, vol. 2 of University Lecture Series,, American Mathematical Society, (1990).  doi: 10.1090/ulect/002.  Google Scholar

[13]

S. Katayama, Global existence for systems of nonlinear wave equations in two space dimensions,, Publ. Res. Inst. Math. Sci., 29 (1993), 1021.  doi: 10.2977/prims/1195166427.  Google Scholar

[14]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, (1984), 293.   Google Scholar

[15]

S. Klainerman, On the work and legacy of Fritz John, 1934-1991,, Comm. Pure Appl. Math., 51 (1998), 991.  doi: 10.1002/(SICI)1097-0312(199809/10)51:9/10<991::AID-CPA3>3.0.CO;2-T.  Google Scholar

[16]

S. Klainerman, Long time behaviour of solutions to nonlinear wave equations,, in Proceedings of the International Congress of Mathematicians, (1983), 1209.   Google Scholar

[17]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D,, Comm. Pure Appl. Math., 49 (1996), 307.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[18]

Z. Lei, Global well-posedness of incompressible elastodynamics in 2D,, , ().   Google Scholar

[19]

Zhen, Lei and T. C. Sideris and Yi, Zhou, Almost global existence for $2$-D incompressible isotropic elastodynamics,, Trans. Amer. Math. Soc., 367 (2015), 8175.  doi: 10.1090/tran/6294.  Google Scholar

[20]

W. Peng and D. Zha, Lifespan of classical solutions to the Cauchy problem for nonlinear elastic wave equations in 2-D,, preprint., ().   Google Scholar

[21]

T. C. Sideris, The null condition and global existence of nonlinear elastic waves,, Invent. Math., 123 (1996), 323.  doi: 10.1007/s002220050030.  Google Scholar

[22]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, Ann. of Math. (2), 151 (2000), 849.  doi: 10.2307/121050.  Google Scholar

[23]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit,, Comm. Pure Appl. Math., 58 (2005), 750.  doi: 10.1002/cpa.20049.  Google Scholar

[24]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics,, Comm. Pure Appl. Math., 60 (2007), 1707.  doi: 10.1002/cpa.20196.  Google Scholar

[25]

A. S. Tahvildar-Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strains,, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 275.   Google Scholar

[26]

X. Wang, Global existence for the 2D incompressible isotropic elastodynamics for small initial data,, , ().   Google Scholar

[27]

Y. Zhou, Nonlinear Wave Equations (in Chinese),, Unpublished Lecture Notes, (2006).   Google Scholar

show all references

References:
[1]

R. Agemi, Global existence of nonlinear elastic waves,, Invent. Math., 142 (2000), 225.  doi: 10.1007/s002220000084.  Google Scholar

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597.  doi: 10.1007/s002220100165.  Google Scholar

[3]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations,, Progress in Nonlinear Differential Equations and their Applications, (1995).  doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,, Comm. Pure Appl. Math., 39 (1986), 267.  doi: 10.1002/cpa.3160390205.  Google Scholar

[5]

P. G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity, vol. 20 of Studies in Mathematics and its Applications,, North-Holland Publishing Co., (1988).   Google Scholar

[6]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[7]

M. E. Gurtin, Topics in Finite Elasticity, vol. 35 of CBMS-NSF Regional Conference Series in Applied Mathematics,, Society for Industrial and Applied Mathematics (SIAM), (1981).   Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, in Pseudodifferential operators (Oberwolfach, (1986), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

A. Hoshiga, The initial value problems for quasi-linear wave equations in two space dimensions with small data,, Adv. Math. Sci. Appl., 5 (1995), 67.   Google Scholar

[10]

F. John, Formation of singularities in elastic waves,, in Trends and applications of pure mathematics to mechanics (Palaiseau, (1983), 194.  doi: 10.1007/3-540-12916-2_58.  Google Scholar

[11]

F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances,, Comm. Pure Appl. Math., 41 (1988), 615.  doi: 10.1002/cpa.3160410507.  Google Scholar

[12]

F. John, Nonlinear Wave Equations, Formation of Singularities, vol. 2 of University Lecture Series,, American Mathematical Society, (1990).  doi: 10.1090/ulect/002.  Google Scholar

[13]

S. Katayama, Global existence for systems of nonlinear wave equations in two space dimensions,, Publ. Res. Inst. Math. Sci., 29 (1993), 1021.  doi: 10.2977/prims/1195166427.  Google Scholar

[14]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, (1984), 293.   Google Scholar

[15]

S. Klainerman, On the work and legacy of Fritz John, 1934-1991,, Comm. Pure Appl. Math., 51 (1998), 991.  doi: 10.1002/(SICI)1097-0312(199809/10)51:9/10<991::AID-CPA3>3.0.CO;2-T.  Google Scholar

[16]

S. Klainerman, Long time behaviour of solutions to nonlinear wave equations,, in Proceedings of the International Congress of Mathematicians, (1983), 1209.   Google Scholar

[17]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D,, Comm. Pure Appl. Math., 49 (1996), 307.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[18]

Z. Lei, Global well-posedness of incompressible elastodynamics in 2D,, , ().   Google Scholar

[19]

Zhen, Lei and T. C. Sideris and Yi, Zhou, Almost global existence for $2$-D incompressible isotropic elastodynamics,, Trans. Amer. Math. Soc., 367 (2015), 8175.  doi: 10.1090/tran/6294.  Google Scholar

[20]

W. Peng and D. Zha, Lifespan of classical solutions to the Cauchy problem for nonlinear elastic wave equations in 2-D,, preprint., ().   Google Scholar

[21]

T. C. Sideris, The null condition and global existence of nonlinear elastic waves,, Invent. Math., 123 (1996), 323.  doi: 10.1007/s002220050030.  Google Scholar

[22]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves,, Ann. of Math. (2), 151 (2000), 849.  doi: 10.2307/121050.  Google Scholar

[23]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit,, Comm. Pure Appl. Math., 58 (2005), 750.  doi: 10.1002/cpa.20049.  Google Scholar

[24]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics,, Comm. Pure Appl. Math., 60 (2007), 1707.  doi: 10.1002/cpa.20196.  Google Scholar

[25]

A. S. Tahvildar-Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strains,, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 275.   Google Scholar

[26]

X. Wang, Global existence for the 2D incompressible isotropic elastodynamics for small initial data,, , ().   Google Scholar

[27]

Y. Zhou, Nonlinear Wave Equations (in Chinese),, Unpublished Lecture Notes, (2006).   Google Scholar

[1]

Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431

[2]

Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations & Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319

[3]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[4]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

[5]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[6]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

[7]

Huicheng Yin, Lin Zhang. The global stability of 2-D viscous axisymmetric circulatory flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5065-5083. doi: 10.3934/dcds.2017219

[8]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[9]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[10]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[11]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[12]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[13]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[14]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[15]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[16]

Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439

[17]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

[18]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[19]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[20]

Quan Wang, Hong Luo, Tian Ma. Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 675-682. doi: 10.3934/dcdsb.2015.20.675

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]