August  2016, 36(8): 4101-4131. doi: 10.3934/dcds.2016.36.4101

Improved estimates for nonoscillatory phase functions

1. 

Department of Mathematics, University of California, Davis, Davis, CA 95616, United States

2. 

Department of Computer Science, Yale University, New Haven, CT 06511, United States

Received  May 2015 Published  March 2016

Recently, it was observed that solutions of a large class of highly oscillatory second order linear ordinary differential equations can be approximated using nonoscillatory phase functions. In particular, under mild assumptions on the coefficients and wavenumber $\lambda$ of the equation, there exists a function whose Fourier transform decays as $\exp(-\mu |\xi|)$ and which represents solutions of the differential equation with accuracy on the order of $\lambda^{-1} \exp(-\mu \lambda)$. In this article, we establish an improved existence theorem for nonoscillatory phase functions. Among other things, we show that solutions of second order linear ordinary differential equations can be represented with accuracy on the order of $\lambda^{-1} \exp(-\mu \lambda)$ using functions in the space of rapidly decaying Schwartz functions whose Fourier transforms are both exponentially decaying and compactly supported. These new observations are used in the analysis of a method for the numerical solution of second order ordinary differential equations whose running time is independent of the parameter $\lambda$. This algorithm will be reported at a later date.
Citation: James Bremer, Vladimir Rokhlin. Improved estimates for nonoscillatory phase functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4101-4131. doi: 10.3934/dcds.2016.36.4101
References:
[1]

G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999). doi: 10.1017/CBO9781107325937. Google Scholar

[2]

R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953). Google Scholar

[3]

O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971). Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955). Google Scholar

[5]

A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198. doi: 10.4310/MAA.1995.v2.n2.a5. Google Scholar

[6]

A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173. doi: 10.4310/MAA.1995.v2.n2.a4. Google Scholar

[7]

M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993). doi: 10.1007/978-3-642-58016-1. Google Scholar

[8]

G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999). Google Scholar

[9]

M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18. doi: 10.2307/2002123. Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, Springer, (2014). doi: 10.1007/978-1-4939-1194-3. Google Scholar

[11]

L. Grafakos, Modern Fourier Analysis,, Springer, (2009). doi: 10.1007/978-0-387-09434-2. Google Scholar

[12]

Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1. doi: 10.1016/j.jcp.2015.02.028. Google Scholar

[13]

Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347. doi: 10.1016/j.acha.2014.12.002. Google Scholar

[14]

L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990). doi: 10.1007/978-3-642-61497-2. Google Scholar

[15]

L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990). Google Scholar

[16]

E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., (). Google Scholar

[17]

F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991). Google Scholar

[18]

F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010). Google Scholar

[19]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976). Google Scholar

[20]

J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516. doi: 10.1016/j.jmaa.2010.09.030. Google Scholar

[21]

R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565. doi: 10.1007/s00211-011-0441-9. Google Scholar

[22]

N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013). Google Scholar

[23]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986). doi: 10.1007/978-1-4612-4838-5. Google Scholar

show all references

References:
[1]

G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999). doi: 10.1017/CBO9781107325937. Google Scholar

[2]

R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953). Google Scholar

[3]

O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971). Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955). Google Scholar

[5]

A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198. doi: 10.4310/MAA.1995.v2.n2.a5. Google Scholar

[6]

A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173. doi: 10.4310/MAA.1995.v2.n2.a4. Google Scholar

[7]

M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993). doi: 10.1007/978-3-642-58016-1. Google Scholar

[8]

G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999). Google Scholar

[9]

M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18. doi: 10.2307/2002123. Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, Springer, (2014). doi: 10.1007/978-1-4939-1194-3. Google Scholar

[11]

L. Grafakos, Modern Fourier Analysis,, Springer, (2009). doi: 10.1007/978-0-387-09434-2. Google Scholar

[12]

Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1. doi: 10.1016/j.jcp.2015.02.028. Google Scholar

[13]

Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347. doi: 10.1016/j.acha.2014.12.002. Google Scholar

[14]

L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990). doi: 10.1007/978-3-642-61497-2. Google Scholar

[15]

L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990). Google Scholar

[16]

E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., (). Google Scholar

[17]

F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991). Google Scholar

[18]

F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010). Google Scholar

[19]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976). Google Scholar

[20]

J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516. doi: 10.1016/j.jmaa.2010.09.030. Google Scholar

[21]

R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565. doi: 10.1007/s00211-011-0441-9. Google Scholar

[22]

N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013). Google Scholar

[23]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986). doi: 10.1007/978-1-4612-4838-5. Google Scholar

[1]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[2]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[3]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[4]

Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21

[5]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[6]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[7]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[8]

Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231

[9]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[10]

H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301

[11]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[12]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[13]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[14]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[15]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[16]

Pascale Charpin, Jie Peng. Differential uniformity and the associated codes of cryptographic functions. Advances in Mathematics of Communications, 2019, 13 (4) : 579-600. doi: 10.3934/amc.2019036

[17]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[18]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

[19]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[20]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]