-
Previous Article
Low-dimensional Galerkin approximations of nonlinear delay differential equations
- DCDS Home
- This Issue
-
Next Article
Efficient representation and accurate evaluation of oscillatory integrals and functions
Improved estimates for nonoscillatory phase functions
1. | Department of Mathematics, University of California, Davis, Davis, CA 95616, United States |
2. | Department of Computer Science, Yale University, New Haven, CT 06511, United States |
References:
[1] |
G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).
doi: 10.1017/CBO9781107325937. |
[2] |
R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953).
|
[3] |
O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971).
|
[4] |
E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955).
|
[5] |
A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198.
doi: 10.4310/MAA.1995.v2.n2.a5. |
[6] |
A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173.
doi: 10.4310/MAA.1995.v2.n2.a4. |
[7] |
M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993).
doi: 10.1007/978-3-642-58016-1. |
[8] |
G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999).
|
[9] |
M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18.
doi: 10.2307/2002123. |
[10] |
L. Grafakos, Classical Fourier Analysis,, Springer, (2014).
doi: 10.1007/978-1-4939-1194-3. |
[11] |
L. Grafakos, Modern Fourier Analysis,, Springer, (2009).
doi: 10.1007/978-0-387-09434-2. |
[12] |
Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1.
doi: 10.1016/j.jcp.2015.02.028. |
[13] |
Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347.
doi: 10.1016/j.acha.2014.12.002. |
[14] |
L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990).
doi: 10.1007/978-3-642-61497-2. |
[15] |
L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990). Google Scholar |
[16] |
E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., (). Google Scholar |
[17] |
F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991).
|
[18] |
F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).
|
[19] |
W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976).
|
[20] |
J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516.
doi: 10.1016/j.jmaa.2010.09.030. |
[21] |
R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565.
doi: 10.1007/s00211-011-0441-9. |
[22] |
N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013).
|
[23] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986).
doi: 10.1007/978-1-4612-4838-5. |
show all references
References:
[1] |
G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).
doi: 10.1017/CBO9781107325937. |
[2] |
R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953).
|
[3] |
O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971).
|
[4] |
E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955).
|
[5] |
A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198.
doi: 10.4310/MAA.1995.v2.n2.a5. |
[6] |
A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173.
doi: 10.4310/MAA.1995.v2.n2.a4. |
[7] |
M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993).
doi: 10.1007/978-3-642-58016-1. |
[8] |
G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999).
|
[9] |
M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18.
doi: 10.2307/2002123. |
[10] |
L. Grafakos, Classical Fourier Analysis,, Springer, (2014).
doi: 10.1007/978-1-4939-1194-3. |
[11] |
L. Grafakos, Modern Fourier Analysis,, Springer, (2009).
doi: 10.1007/978-0-387-09434-2. |
[12] |
Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1.
doi: 10.1016/j.jcp.2015.02.028. |
[13] |
Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347.
doi: 10.1016/j.acha.2014.12.002. |
[14] |
L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990).
doi: 10.1007/978-3-642-61497-2. |
[15] |
L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990). Google Scholar |
[16] |
E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., (). Google Scholar |
[17] |
F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991).
|
[18] |
F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).
|
[19] |
W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976).
|
[20] |
J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516.
doi: 10.1016/j.jmaa.2010.09.030. |
[21] |
R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565.
doi: 10.1007/s00211-011-0441-9. |
[22] |
N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013).
|
[23] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986).
doi: 10.1007/978-1-4612-4838-5. |
[1] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[2] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[3] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[4] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[5] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[6] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[7] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[8] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[9] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[10] |
Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092 |
[11] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[12] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[13] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[14] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[15] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[16] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[17] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[18] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[19] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[20] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]