August  2016, 36(8): 4101-4131. doi: 10.3934/dcds.2016.36.4101

Improved estimates for nonoscillatory phase functions

1. 

Department of Mathematics, University of California, Davis, Davis, CA 95616, United States

2. 

Department of Computer Science, Yale University, New Haven, CT 06511, United States

Received  May 2015 Published  March 2016

Recently, it was observed that solutions of a large class of highly oscillatory second order linear ordinary differential equations can be approximated using nonoscillatory phase functions. In particular, under mild assumptions on the coefficients and wavenumber $\lambda$ of the equation, there exists a function whose Fourier transform decays as $\exp(-\mu |\xi|)$ and which represents solutions of the differential equation with accuracy on the order of $\lambda^{-1} \exp(-\mu \lambda)$. In this article, we establish an improved existence theorem for nonoscillatory phase functions. Among other things, we show that solutions of second order linear ordinary differential equations can be represented with accuracy on the order of $\lambda^{-1} \exp(-\mu \lambda)$ using functions in the space of rapidly decaying Schwartz functions whose Fourier transforms are both exponentially decaying and compactly supported. These new observations are used in the analysis of a method for the numerical solution of second order ordinary differential equations whose running time is independent of the parameter $\lambda$. This algorithm will be reported at a later date.
Citation: James Bremer, Vladimir Rokhlin. Improved estimates for nonoscillatory phase functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4101-4131. doi: 10.3934/dcds.2016.36.4101
References:
[1]

G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781107325937.  Google Scholar

[2]

R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953).   Google Scholar

[3]

O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971).   Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955).   Google Scholar

[5]

A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198.  doi: 10.4310/MAA.1995.v2.n2.a5.  Google Scholar

[6]

A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173.  doi: 10.4310/MAA.1995.v2.n2.a4.  Google Scholar

[7]

M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-58016-1.  Google Scholar

[8]

G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999).   Google Scholar

[9]

M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18.  doi: 10.2307/2002123.  Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, Springer, (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[11]

L. Grafakos, Modern Fourier Analysis,, Springer, (2009).  doi: 10.1007/978-0-387-09434-2.  Google Scholar

[12]

Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1.  doi: 10.1016/j.jcp.2015.02.028.  Google Scholar

[13]

Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347.  doi: 10.1016/j.acha.2014.12.002.  Google Scholar

[14]

L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990).  doi: 10.1007/978-3-642-61497-2.  Google Scholar

[15]

L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990).   Google Scholar

[16]

E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., ().   Google Scholar

[17]

F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991).   Google Scholar

[18]

F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).   Google Scholar

[19]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976).   Google Scholar

[20]

J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516.  doi: 10.1016/j.jmaa.2010.09.030.  Google Scholar

[21]

R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565.  doi: 10.1007/s00211-011-0441-9.  Google Scholar

[22]

N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013).   Google Scholar

[23]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

G. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781107325937.  Google Scholar

[2]

R. Bellman, Stability Theory of Differential Equations,, Dover Publications, (1953).   Google Scholar

[3]

O. Borůvka, Linear Differential Transformations of the Second Order,, The English University Press, (1971).   Google Scholar

[4]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Krieger Publishing Company, (1955).   Google Scholar

[5]

A. O. Daalhuis, Hyperasymptotic solutions of second-order linear differential equations. II,, Methods and Applications of Analysis, 2 (1995), 198.  doi: 10.4310/MAA.1995.v2.n2.a5.  Google Scholar

[6]

A. O. Daalhuis and F. W. J. Olver, Hyperasymptotic solutions of second-order linear differential equations. I,, Methods and Applications of Analysis, 2 (1995), 173.  doi: 10.4310/MAA.1995.v2.n2.a4.  Google Scholar

[7]

M. V. Fedoryuk, Asymptotic Analysis,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-58016-1.  Google Scholar

[8]

G. B. Folland, Real Analysis: Modern Techniques and Their Application,, 2nd edition, (1999).   Google Scholar

[9]

M. Goldstein and R. M. Thaler, Bessel functions for large arguments,, Mathematical Tables and Other Aids to Computation, 12 (1958), 18.  doi: 10.2307/2002123.  Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, Springer, (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[11]

L. Grafakos, Modern Fourier Analysis,, Springer, (2009).  doi: 10.1007/978-0-387-09434-2.  Google Scholar

[12]

Z. Heitman, J. Bremer and V. Rokhlin, On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime,, Journal of Computational Physics, 290 (2015), 1.  doi: 10.1016/j.jcp.2015.02.028.  Google Scholar

[13]

Z. Heitman, J. Bremer, V. Rokhlin and B. Vioreanu, On the asymptotics of Bessel functions in the Fresnel regime,, Applied and Computational Harmonic Analysis, 39 (2015), 347.  doi: 10.1016/j.acha.2014.12.002.  Google Scholar

[14]

L. Hörmader, The Analysis of Linear Partial Differential Operators I,, 2nd edition, (1990).  doi: 10.1007/978-3-642-61497-2.  Google Scholar

[15]

L. Hörmader, The Analysis of Linear Partial Differential Operators II,, 2nd edition, (1990).   Google Scholar

[16]

E. Kummer, De generali quadam aequatione differentiali tertti ordinis,, Progr. Evang. Köngil. Stadtgymnasium Liegnitz., ().   Google Scholar

[17]

F. Neuman, Global Properties of Linear Ordinary Differential Equations,, Kluwer Academic Publishers, (1991).   Google Scholar

[18]

F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).   Google Scholar

[19]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill, (1976).   Google Scholar

[20]

J. Segura, Bounds for the ratios of modified Bessel functions and associated Turán-type inequalities,, Journal of Mathematics Analysis and Applications, 374 (2011), 516.  doi: 10.1016/j.jmaa.2010.09.030.  Google Scholar

[21]

R. Spigler and M. Vianello, The phase function method to solve second-order asymptotically polynomial differential equations,, Numerische Mathematik, 121 (2012), 565.  doi: 10.1007/s00211-011-0441-9.  Google Scholar

[22]

N. Trefethen, Approximation Theory and Approximation Practice,, Society for Industrial and Applied Mathematics, (2013).   Google Scholar

[23]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Volume I: Fixed-point Theorems,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[1]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[2]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[5]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[6]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[7]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[8]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[9]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[10]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[11]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[12]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[13]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[14]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[15]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[16]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[17]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[18]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[19]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[20]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]