August  2016, 36(8): 4179-4211. doi: 10.3934/dcds.2016.36.4179

Transonic flows with shocks past curved wedges for the full Euler equations

1. 

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcli e Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom

2. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

3. 

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706-1388, United States

Received  April 2015 Revised  January 2016 Published  March 2016

We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbolic-elliptic type. To achieve this, we first employ the transformation from Eulerian to Lagrangian coordinates and then exploit one of the new equations to identify a potential function in Lagrangian coordinates. By capturing the conservation properties of the system, we derive a single second-order nonlinear elliptic equation for the potential function in the subsonic region so that the transonic shock problem is reformulated as a one-phase free boundary problem for the nonlinear equation with the shock-front as a free boundary. One of the advantages of this approach is that, given the shock location or equivalently the entropy function along the shock-front downstream, all the physical variables can be expressed as functions of the gradient of the potential function, and the downstream asymptotic behavior of the potential function at infinity can be uniquely determined with a uniform decay rate. To solve the free boundary problem, we employ the hodograph transformation to transfer the free boundary to a fixed boundary, while keeping the ellipticity of the nonlinear equation, and then update the entropy function to prove that the updating map has a fixed point. Another advantage in our analysis is in the context of the full Euler equations so that the Bernoulli constant is allowed to change for different fluid trajectories.
Citation: Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks past curved wedges for the full Euler equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4179-4211. doi: 10.3934/dcds.2016.36.4179
References:
[1]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles,, J. Math. Pures Appl. (9), 88 (2007), 191.  doi: 10.1016/j.matpur.2007.04.008.  Google Scholar

[2]

G.-Q. Chen and B. Fang, Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone,, Discrete Contin. Dyn. Syst., 23 (2009), 85.  doi: 10.3934/dcds.2009.23.85.  Google Scholar

[3]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461.  doi: 10.1090/S0894-0347-03-00422-3.  Google Scholar

[4]

G.-Q. Chen and T. Li, Well-posedness for two-dimnsional steady supersonic Euler flows past a Lipschitz wedge,, J. Diff. Eqs., 244 (2008), 1521.   Google Scholar

[5]

G.-Q. Chen, Y.-Q. Zhang and D.-W. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges,, Arch. Rational Mech. Anal., 181 (2006), 261.  doi: 10.1007/s00205-005-0412-3.  Google Scholar

[6]

S.-X. Chen, Supersonic flow past a concave wedge,, Science in China, 10 (1997), 903.   Google Scholar

[7]

S.-X. Chen, Asymptotic behavior of supersonic flow past a convex combined wedge,, Chin. Ann. Math., 19 (1998), 255.   Google Scholar

[8]

S.-X. Chen, A free boundary problem of elliptic equation arising in supersonic flow past a conical body,, Z. Angew. Math. Phys., 54 (2003), 387.  doi: 10.1007/s00033-003-2111-y.  Google Scholar

[9]

S.-X. Chen, Stability of transonic shock front in multi-dimensional Euler system,, Trans. Amer. Math. Soc., 357 (2005), 287.  doi: 10.1090/S0002-9947-04-03698-0.  Google Scholar

[10]

S.-X. Chen, Stability of a Mach configuration,, Comm. Pure Appl. Math., 59 (2006), 1.  doi: 10.1002/cpa.20108.  Google Scholar

[11]

S.-X. Chen and B.-X. Fang, Stability of transonic shocks in supersonic flow past a wedge,, J. Diff. Eqs., 233 (2007), 105.  doi: 10.1016/j.jde.2006.09.020.  Google Scholar

[12]

S.-X. Chen, Z. Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone,, Comm. Math. Phys., 228 (2002), 47.  doi: 10.1007/s002200200652.  Google Scholar

[13]

S.-X. Chen and H. Yuan, Transonic shocks in compressible flow assing a duct for three-dimensional Euler system,, Arch. Rational Mech. Anal., 187 (2008), 523.  doi: 10.1007/s00205-007-0079-z.  Google Scholar

[14]

A. Chorin and J. A. Marsden, A Mathematical Introduction to Fluid Mechanics,, $3^{rd}$ edition, (1993).   Google Scholar

[15]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Wiley Interscience, (1948).   Google Scholar

[16]

B.-X. Fang, Stability of transonic shocks for the full Euler system in supersonic flow past a wedge,, Math. Methods Appl. Sci., 29 (2006), 1.  doi: 10.1002/mma.661.  Google Scholar

[17]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, $2^{nd}$ edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[19]

C. Gu, A method for solving the supersonic flow past a curved wedge,, Fudan J.(Nature Sci.), 7 (1962), 11.   Google Scholar

[20]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, CBMS-RCSAM, 11 (1973).   Google Scholar

[21]

P. D. Lax, Hyperbolic systems of conservation laws in several space variables,, In: Current Topics in Partial Differential Equations, (1986), 327.   Google Scholar

[22]

P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes,, SIAM J. Sci. Comput., 19 (1998), 319.  doi: 10.1137/S1064827595291819.  Google Scholar

[23]

T. Li, On a free boundary problem,, Chinese Ann. Math., 1 (1980), 351.   Google Scholar

[24]

W. Lien and T.-P. Li, Nonlinear stability of a self-similar 3-dimensional gas flow,, Commun. Math. Phys., 204 (1999), 525.  doi: 10.1007/s002200050656.  Google Scholar

[25]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[26]

L. Prandtl, Allgemeine Überlegungen über die Strömung zusammendrückbarer Flüssigkeiten,, Z. Angew. Math. Mech., 16 (1936), 129.   Google Scholar

[27]

D. G. Schaeffer, Supersonic flow past a nearly straight wedge,, Duke Math. J., 43 (1976), 637.  doi: 10.1215/S0012-7094-76-04351-9.  Google Scholar

[28]

J. von Neumann, Discussion on the existence and uniqueness or multiplicity of solutions of the aerodynamical equations [Reprinted from MR0044302],, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 145.  doi: 10.1090/S0273-0979-09-01281-6.  Google Scholar

[29]

Y. Zhang, Steady supersonic flow past an almost straight wedge with large vertex angle,, J. Diff. Eqs., 192 (2003), 1.  doi: 10.1016/S0022-0396(03)00037-8.  Google Scholar

show all references

References:
[1]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles,, J. Math. Pures Appl. (9), 88 (2007), 191.  doi: 10.1016/j.matpur.2007.04.008.  Google Scholar

[2]

G.-Q. Chen and B. Fang, Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone,, Discrete Contin. Dyn. Syst., 23 (2009), 85.  doi: 10.3934/dcds.2009.23.85.  Google Scholar

[3]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461.  doi: 10.1090/S0894-0347-03-00422-3.  Google Scholar

[4]

G.-Q. Chen and T. Li, Well-posedness for two-dimnsional steady supersonic Euler flows past a Lipschitz wedge,, J. Diff. Eqs., 244 (2008), 1521.   Google Scholar

[5]

G.-Q. Chen, Y.-Q. Zhang and D.-W. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges,, Arch. Rational Mech. Anal., 181 (2006), 261.  doi: 10.1007/s00205-005-0412-3.  Google Scholar

[6]

S.-X. Chen, Supersonic flow past a concave wedge,, Science in China, 10 (1997), 903.   Google Scholar

[7]

S.-X. Chen, Asymptotic behavior of supersonic flow past a convex combined wedge,, Chin. Ann. Math., 19 (1998), 255.   Google Scholar

[8]

S.-X. Chen, A free boundary problem of elliptic equation arising in supersonic flow past a conical body,, Z. Angew. Math. Phys., 54 (2003), 387.  doi: 10.1007/s00033-003-2111-y.  Google Scholar

[9]

S.-X. Chen, Stability of transonic shock front in multi-dimensional Euler system,, Trans. Amer. Math. Soc., 357 (2005), 287.  doi: 10.1090/S0002-9947-04-03698-0.  Google Scholar

[10]

S.-X. Chen, Stability of a Mach configuration,, Comm. Pure Appl. Math., 59 (2006), 1.  doi: 10.1002/cpa.20108.  Google Scholar

[11]

S.-X. Chen and B.-X. Fang, Stability of transonic shocks in supersonic flow past a wedge,, J. Diff. Eqs., 233 (2007), 105.  doi: 10.1016/j.jde.2006.09.020.  Google Scholar

[12]

S.-X. Chen, Z. Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone,, Comm. Math. Phys., 228 (2002), 47.  doi: 10.1007/s002200200652.  Google Scholar

[13]

S.-X. Chen and H. Yuan, Transonic shocks in compressible flow assing a duct for three-dimensional Euler system,, Arch. Rational Mech. Anal., 187 (2008), 523.  doi: 10.1007/s00205-007-0079-z.  Google Scholar

[14]

A. Chorin and J. A. Marsden, A Mathematical Introduction to Fluid Mechanics,, $3^{rd}$ edition, (1993).   Google Scholar

[15]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Wiley Interscience, (1948).   Google Scholar

[16]

B.-X. Fang, Stability of transonic shocks for the full Euler system in supersonic flow past a wedge,, Math. Methods Appl. Sci., 29 (2006), 1.  doi: 10.1002/mma.661.  Google Scholar

[17]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, $2^{nd}$ edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[19]

C. Gu, A method for solving the supersonic flow past a curved wedge,, Fudan J.(Nature Sci.), 7 (1962), 11.   Google Scholar

[20]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, CBMS-RCSAM, 11 (1973).   Google Scholar

[21]

P. D. Lax, Hyperbolic systems of conservation laws in several space variables,, In: Current Topics in Partial Differential Equations, (1986), 327.   Google Scholar

[22]

P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes,, SIAM J. Sci. Comput., 19 (1998), 319.  doi: 10.1137/S1064827595291819.  Google Scholar

[23]

T. Li, On a free boundary problem,, Chinese Ann. Math., 1 (1980), 351.   Google Scholar

[24]

W. Lien and T.-P. Li, Nonlinear stability of a self-similar 3-dimensional gas flow,, Commun. Math. Phys., 204 (1999), 525.  doi: 10.1007/s002200050656.  Google Scholar

[25]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[26]

L. Prandtl, Allgemeine Überlegungen über die Strömung zusammendrückbarer Flüssigkeiten,, Z. Angew. Math. Mech., 16 (1936), 129.   Google Scholar

[27]

D. G. Schaeffer, Supersonic flow past a nearly straight wedge,, Duke Math. J., 43 (1976), 637.  doi: 10.1215/S0012-7094-76-04351-9.  Google Scholar

[28]

J. von Neumann, Discussion on the existence and uniqueness or multiplicity of solutions of the aerodynamical equations [Reprinted from MR0044302],, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 145.  doi: 10.1090/S0273-0979-09-01281-6.  Google Scholar

[29]

Y. Zhang, Steady supersonic flow past an almost straight wedge with large vertex angle,, J. Diff. Eqs., 192 (2003), 1.  doi: 10.1016/S0022-0396(03)00037-8.  Google Scholar

[1]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[2]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[3]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[4]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[5]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[6]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[7]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[8]

Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573

[9]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[10]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[11]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[12]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[13]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[14]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks & Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[15]

Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125

[16]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[17]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[18]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[19]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[20]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]