August  2016, 36(8): 4213-4225. doi: 10.3934/dcds.2016.36.4213

The unsteady transonic small disturbance equation: Data on oblique curves

1. 

Fields Institute, United States

2. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States

Received  May 2015 Revised  November 2015 Published  March 2016

We propose and solve a new problem for the unsteady transonic small disturbance equation. Data are given for the self-similar equation in a fixed, bounded region of similarity space, where on a part of the boundary the equation has degenerate type (a `sonic line') and on the remainder it is elliptic. Previous results on this problem have chosen data so that the solution is constant on the sonic line, but we set up a situation where the solution is not constant on the sonic part of the boundary. The solution we find is Lipschitz up to the boundary. Our solution sets the stage for resolution of some interesting Riemann problems for this equation and for other multidimensional conservation laws.
Citation: Mary Chern, Barbara Lee Keyfitz. The unsteady transonic small disturbance equation: Data on oblique curves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4213-4225. doi: 10.3934/dcds.2016.36.4213
References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two dimensional Burgers equation,, Physica D, 60 (1992), 194.  doi: 10.1016/0167-2789(92)90236-G.  Google Scholar

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, Journal of Differential Equations, 125 (1996), 548.  doi: 10.1006/jdeq.1996.0040.  Google Scholar

[3]

S. Čanić and B. L. Keyfitz, A smooth solution for a Keldysh type equation,, Communications in Partial Differential Equations, 21 (1996), 319.  doi: 10.1080/03605309608821186.  Google Scholar

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks,, Communications on Pure and Applied Mathematics, LV (2002), 71.   Google Scholar

[5]

S. Čanić and D. Mirković, A numerical study of shock reflection modeled by the unsteady transonic small disturbance equation,, SIAM Journal on Applied Mathematics, 58 (1998), 1365.  doi: 10.1137/S003613999730884X.  Google Scholar

[6]

G.-Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow,, Annals of Mathematics, 171 (2010), 1067.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[7]

S.-X. Chen, Mach configuration in pseudo-stationary compressible flow,, Journal of the American Mathematical Society, 21 (2008), 63.  doi: 10.1090/S0894-0347-07-00559-0.  Google Scholar

[8]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge},, Communications on Pure and Applied Mathematics, 61 (2008), 1347.  doi: 10.1002/cpa.20231.  Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti della Accademia Nazionale dei Lincei, 5 (1956), 1.   Google Scholar

[10]

G. Fichera, On a unified theory of boundary value problems for elliptic- parabolic equations of second order,, In R. E. Langer, (1960), 97.   Google Scholar

[11]

J. K. Hunter and A. M. Tesdall, On the self-similar diffraction of a weak shock into an expansion wavefront,, SIAM Journal on Applied Mathematics, 72 (2012), 124.  doi: 10.1137/110834135.  Google Scholar

[12]

I. Jegdić and K. Jegdić, Properties of solutions in semi-hyperbolic patches for the unsteady transonic small disturbance equation,, Electronic Journal of Differential Equations, ().   Google Scholar

[13]

K. Jegdić, B. L. Keyfitz and S. Čanić, Transonic regular reflection for the unsteady transonic small disturbance equation - details of the subsonic solution,, In R. Glowinski and J. P. Zolesio, (2007), 125.  doi: 10.1201/9781420011159.ch6.  Google Scholar

[14]

B. L. Keyfitz, Self-similar solutions of two-dimensional conservation laws,, Journal of Hyperbolic Differential Equations, 1 (2004), 445.  doi: 10.1142/S0219891604000160.  Google Scholar

[15]

B. L. Keyfitz, The Fichera function and nonlinear equations,, Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni. Parte I, 30 (2006), 83.   Google Scholar

[16]

B. L. Keyfitz, A. Tesdall, K. R. Payne and N. I. Popivanov, The sonic line as a free boundary,, Quarterly of Applied Mathematics, 71 (2013), 119.  doi: 10.1090/S0033-569X-2012-01283-6.  Google Scholar

[17]

O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[18]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[19]

E. G. Tabak and R. R. Rosales, Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection,, Physics of Fluids A, 6 (1994), 1874.  doi: 10.1063/1.868246.  Google Scholar

[20]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection,, SIAM Journal on Applied Mathematics, 63 (2002), 42.  doi: 10.1137/S0036139901383826.  Google Scholar

[21]

A. M. Tesdall and B. L. Keyfitz, A continuous, two-way free boundary in the unsteady transonic small disturbance equations,, Journal of Hyperbolic Differential Equations, 7 (2010), 317.  doi: 10.1142/S0219891610002153.  Google Scholar

[22]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics,, SIAM Journal on Applied Mathematics, 68 (2008), 1360.  doi: 10.1137/070698567.  Google Scholar

show all references

References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two dimensional Burgers equation,, Physica D, 60 (1992), 194.  doi: 10.1016/0167-2789(92)90236-G.  Google Scholar

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, Journal of Differential Equations, 125 (1996), 548.  doi: 10.1006/jdeq.1996.0040.  Google Scholar

[3]

S. Čanić and B. L. Keyfitz, A smooth solution for a Keldysh type equation,, Communications in Partial Differential Equations, 21 (1996), 319.  doi: 10.1080/03605309608821186.  Google Scholar

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks,, Communications on Pure and Applied Mathematics, LV (2002), 71.   Google Scholar

[5]

S. Čanić and D. Mirković, A numerical study of shock reflection modeled by the unsteady transonic small disturbance equation,, SIAM Journal on Applied Mathematics, 58 (1998), 1365.  doi: 10.1137/S003613999730884X.  Google Scholar

[6]

G.-Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow,, Annals of Mathematics, 171 (2010), 1067.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[7]

S.-X. Chen, Mach configuration in pseudo-stationary compressible flow,, Journal of the American Mathematical Society, 21 (2008), 63.  doi: 10.1090/S0894-0347-07-00559-0.  Google Scholar

[8]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge},, Communications on Pure and Applied Mathematics, 61 (2008), 1347.  doi: 10.1002/cpa.20231.  Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti della Accademia Nazionale dei Lincei, 5 (1956), 1.   Google Scholar

[10]

G. Fichera, On a unified theory of boundary value problems for elliptic- parabolic equations of second order,, In R. E. Langer, (1960), 97.   Google Scholar

[11]

J. K. Hunter and A. M. Tesdall, On the self-similar diffraction of a weak shock into an expansion wavefront,, SIAM Journal on Applied Mathematics, 72 (2012), 124.  doi: 10.1137/110834135.  Google Scholar

[12]

I. Jegdić and K. Jegdić, Properties of solutions in semi-hyperbolic patches for the unsteady transonic small disturbance equation,, Electronic Journal of Differential Equations, ().   Google Scholar

[13]

K. Jegdić, B. L. Keyfitz and S. Čanić, Transonic regular reflection for the unsteady transonic small disturbance equation - details of the subsonic solution,, In R. Glowinski and J. P. Zolesio, (2007), 125.  doi: 10.1201/9781420011159.ch6.  Google Scholar

[14]

B. L. Keyfitz, Self-similar solutions of two-dimensional conservation laws,, Journal of Hyperbolic Differential Equations, 1 (2004), 445.  doi: 10.1142/S0219891604000160.  Google Scholar

[15]

B. L. Keyfitz, The Fichera function and nonlinear equations,, Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni. Parte I, 30 (2006), 83.   Google Scholar

[16]

B. L. Keyfitz, A. Tesdall, K. R. Payne and N. I. Popivanov, The sonic line as a free boundary,, Quarterly of Applied Mathematics, 71 (2013), 119.  doi: 10.1090/S0033-569X-2012-01283-6.  Google Scholar

[17]

O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[18]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[19]

E. G. Tabak and R. R. Rosales, Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection,, Physics of Fluids A, 6 (1994), 1874.  doi: 10.1063/1.868246.  Google Scholar

[20]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection,, SIAM Journal on Applied Mathematics, 63 (2002), 42.  doi: 10.1137/S0036139901383826.  Google Scholar

[21]

A. M. Tesdall and B. L. Keyfitz, A continuous, two-way free boundary in the unsteady transonic small disturbance equations,, Journal of Hyperbolic Differential Equations, 7 (2010), 317.  doi: 10.1142/S0219891610002153.  Google Scholar

[22]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics,, SIAM Journal on Applied Mathematics, 68 (2008), 1360.  doi: 10.1137/070698567.  Google Scholar

[1]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[2]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[3]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[4]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[5]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[6]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

[7]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[8]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020168

[10]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[11]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[12]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[13]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[14]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[15]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[16]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[17]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[18]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[19]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[20]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]