August  2016, 36(8): 4213-4225. doi: 10.3934/dcds.2016.36.4213

The unsteady transonic small disturbance equation: Data on oblique curves

1. 

Fields Institute, United States

2. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States

Received  May 2015 Revised  November 2015 Published  March 2016

We propose and solve a new problem for the unsteady transonic small disturbance equation. Data are given for the self-similar equation in a fixed, bounded region of similarity space, where on a part of the boundary the equation has degenerate type (a `sonic line') and on the remainder it is elliptic. Previous results on this problem have chosen data so that the solution is constant on the sonic line, but we set up a situation where the solution is not constant on the sonic part of the boundary. The solution we find is Lipschitz up to the boundary. Our solution sets the stage for resolution of some interesting Riemann problems for this equation and for other multidimensional conservation laws.
Citation: Mary Chern, Barbara Lee Keyfitz. The unsteady transonic small disturbance equation: Data on oblique curves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4213-4225. doi: 10.3934/dcds.2016.36.4213
References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two dimensional Burgers equation,, Physica D, 60 (1992), 194.  doi: 10.1016/0167-2789(92)90236-G.  Google Scholar

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, Journal of Differential Equations, 125 (1996), 548.  doi: 10.1006/jdeq.1996.0040.  Google Scholar

[3]

S. Čanić and B. L. Keyfitz, A smooth solution for a Keldysh type equation,, Communications in Partial Differential Equations, 21 (1996), 319.  doi: 10.1080/03605309608821186.  Google Scholar

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks,, Communications on Pure and Applied Mathematics, LV (2002), 71.   Google Scholar

[5]

S. Čanić and D. Mirković, A numerical study of shock reflection modeled by the unsteady transonic small disturbance equation,, SIAM Journal on Applied Mathematics, 58 (1998), 1365.  doi: 10.1137/S003613999730884X.  Google Scholar

[6]

G.-Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow,, Annals of Mathematics, 171 (2010), 1067.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[7]

S.-X. Chen, Mach configuration in pseudo-stationary compressible flow,, Journal of the American Mathematical Society, 21 (2008), 63.  doi: 10.1090/S0894-0347-07-00559-0.  Google Scholar

[8]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge},, Communications on Pure and Applied Mathematics, 61 (2008), 1347.  doi: 10.1002/cpa.20231.  Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti della Accademia Nazionale dei Lincei, 5 (1956), 1.   Google Scholar

[10]

G. Fichera, On a unified theory of boundary value problems for elliptic- parabolic equations of second order,, In R. E. Langer, (1960), 97.   Google Scholar

[11]

J. K. Hunter and A. M. Tesdall, On the self-similar diffraction of a weak shock into an expansion wavefront,, SIAM Journal on Applied Mathematics, 72 (2012), 124.  doi: 10.1137/110834135.  Google Scholar

[12]

I. Jegdić and K. Jegdić, Properties of solutions in semi-hyperbolic patches for the unsteady transonic small disturbance equation,, Electronic Journal of Differential Equations, ().   Google Scholar

[13]

K. Jegdić, B. L. Keyfitz and S. Čanić, Transonic regular reflection for the unsteady transonic small disturbance equation - details of the subsonic solution,, In R. Glowinski and J. P. Zolesio, (2007), 125.  doi: 10.1201/9781420011159.ch6.  Google Scholar

[14]

B. L. Keyfitz, Self-similar solutions of two-dimensional conservation laws,, Journal of Hyperbolic Differential Equations, 1 (2004), 445.  doi: 10.1142/S0219891604000160.  Google Scholar

[15]

B. L. Keyfitz, The Fichera function and nonlinear equations,, Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni. Parte I, 30 (2006), 83.   Google Scholar

[16]

B. L. Keyfitz, A. Tesdall, K. R. Payne and N. I. Popivanov, The sonic line as a free boundary,, Quarterly of Applied Mathematics, 71 (2013), 119.  doi: 10.1090/S0033-569X-2012-01283-6.  Google Scholar

[17]

O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[18]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[19]

E. G. Tabak and R. R. Rosales, Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection,, Physics of Fluids A, 6 (1994), 1874.  doi: 10.1063/1.868246.  Google Scholar

[20]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection,, SIAM Journal on Applied Mathematics, 63 (2002), 42.  doi: 10.1137/S0036139901383826.  Google Scholar

[21]

A. M. Tesdall and B. L. Keyfitz, A continuous, two-way free boundary in the unsteady transonic small disturbance equations,, Journal of Hyperbolic Differential Equations, 7 (2010), 317.  doi: 10.1142/S0219891610002153.  Google Scholar

[22]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics,, SIAM Journal on Applied Mathematics, 68 (2008), 1360.  doi: 10.1137/070698567.  Google Scholar

show all references

References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two dimensional Burgers equation,, Physica D, 60 (1992), 194.  doi: 10.1016/0167-2789(92)90236-G.  Google Scholar

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, Journal of Differential Equations, 125 (1996), 548.  doi: 10.1006/jdeq.1996.0040.  Google Scholar

[3]

S. Čanić and B. L. Keyfitz, A smooth solution for a Keldysh type equation,, Communications in Partial Differential Equations, 21 (1996), 319.  doi: 10.1080/03605309608821186.  Google Scholar

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks,, Communications on Pure and Applied Mathematics, LV (2002), 71.   Google Scholar

[5]

S. Čanić and D. Mirković, A numerical study of shock reflection modeled by the unsteady transonic small disturbance equation,, SIAM Journal on Applied Mathematics, 58 (1998), 1365.  doi: 10.1137/S003613999730884X.  Google Scholar

[6]

G.-Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow,, Annals of Mathematics, 171 (2010), 1067.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[7]

S.-X. Chen, Mach configuration in pseudo-stationary compressible flow,, Journal of the American Mathematical Society, 21 (2008), 63.  doi: 10.1090/S0894-0347-07-00559-0.  Google Scholar

[8]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge},, Communications on Pure and Applied Mathematics, 61 (2008), 1347.  doi: 10.1002/cpa.20231.  Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, Atti della Accademia Nazionale dei Lincei, 5 (1956), 1.   Google Scholar

[10]

G. Fichera, On a unified theory of boundary value problems for elliptic- parabolic equations of second order,, In R. E. Langer, (1960), 97.   Google Scholar

[11]

J. K. Hunter and A. M. Tesdall, On the self-similar diffraction of a weak shock into an expansion wavefront,, SIAM Journal on Applied Mathematics, 72 (2012), 124.  doi: 10.1137/110834135.  Google Scholar

[12]

I. Jegdić and K. Jegdić, Properties of solutions in semi-hyperbolic patches for the unsteady transonic small disturbance equation,, Electronic Journal of Differential Equations, ().   Google Scholar

[13]

K. Jegdić, B. L. Keyfitz and S. Čanić, Transonic regular reflection for the unsteady transonic small disturbance equation - details of the subsonic solution,, In R. Glowinski and J. P. Zolesio, (2007), 125.  doi: 10.1201/9781420011159.ch6.  Google Scholar

[14]

B. L. Keyfitz, Self-similar solutions of two-dimensional conservation laws,, Journal of Hyperbolic Differential Equations, 1 (2004), 445.  doi: 10.1142/S0219891604000160.  Google Scholar

[15]

B. L. Keyfitz, The Fichera function and nonlinear equations,, Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni. Parte I, 30 (2006), 83.   Google Scholar

[16]

B. L. Keyfitz, A. Tesdall, K. R. Payne and N. I. Popivanov, The sonic line as a free boundary,, Quarterly of Applied Mathematics, 71 (2013), 119.  doi: 10.1090/S0033-569X-2012-01283-6.  Google Scholar

[17]

O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[18]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[19]

E. G. Tabak and R. R. Rosales, Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection,, Physics of Fluids A, 6 (1994), 1874.  doi: 10.1063/1.868246.  Google Scholar

[20]

A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection,, SIAM Journal on Applied Mathematics, 63 (2002), 42.  doi: 10.1137/S0036139901383826.  Google Scholar

[21]

A. M. Tesdall and B. L. Keyfitz, A continuous, two-way free boundary in the unsteady transonic small disturbance equations,, Journal of Hyperbolic Differential Equations, 7 (2010), 317.  doi: 10.1142/S0219891610002153.  Google Scholar

[22]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics,, SIAM Journal on Applied Mathematics, 68 (2008), 1360.  doi: 10.1137/070698567.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[5]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[6]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[7]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[8]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[11]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[14]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[15]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[16]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[17]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[18]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[19]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[20]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]