August  2016, 36(8): 4247-4270. doi: 10.3934/dcds.2016.36.4247

High-order finite-volume methods on locally-structured grids

1. 

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

Received  June 2015 Revised  December 2015 Published  March 2016

We present an approach to designing arbitrarily high-order finite-volume spatial discretizations on locally-rectangular grids. It is based on the use of a simple class of high-order quadratures for computing the average of fluxes over faces. This approach has the advantage of being a variation on widely-used second-order methods, so that the prior experience in engineering those methods carries over in the higher-order case. Among the issues discussed are the basic design principles for uniform grids, the extension to locally-refined nest grid hierarchies, and the treatment of complex geometries using mapped grids, multiblock grids, and cut-cell representations.
Citation: Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247
References:
[1]

M. Aftosmis, M. Berger and J. Melton, Robust and efficient Cartesian mesh generation for component-based geometry,, AIAA Journal, 6 (1998), 952.  doi: 10.2514/6.1997-196.  Google Scholar

[2]

M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson's equation,, Journal of Computational Physics, 209 (2005), 1.  doi: 10.1016/j.jcp.2005.02.027.  Google Scholar

[3]

P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker and P. Colella, Compiler-directed transformation for higher-order stencils,, in Proceedings of the Parallel and Distributed Processing Symposium (IPDPS), (2015), 313.  doi: 10.1109/IPDPS.2015.103.  Google Scholar

[4]

J. B. Bell, P. Colella and M. Welcome, A conservative front-tracking for inviscid compressible flow,, in Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, (1991), 814.  doi: 10.2514/6.1991-1599.  Google Scholar

[5]

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics,, Journal of Computational Physics, 82 (1989), 64.  doi: 10.1016/0021-9991(89)90035-1.  Google Scholar

[6]

M. J. Berger and A. Jameson, Automatic adaptive grid refinement for the Euler equations,, AIAA Journal, 23 (1985), 561.  doi: 10.2514/3.8951.  Google Scholar

[7]

M. J. Berger and R. J. LeVeque, An adaptive Cartesian mesh algorithm for the euler equations in arbitrary geometries,, in Proceedings of the AIAA 9th Computational Fluid Dynamics Conference, (1989), 1.  doi: 10.2514/6.1989-1930.  Google Scholar

[8]

J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works,, Journal of Computational Physics, 11 (1973), 38.  doi: 10.1016/0021-9991(73)90147-2.  Google Scholar

[9]

A. Bourlioux, A. T. Layton and M. L. Minion, Higher-order multi-implicit spectral deferred correction methods for problems of reacting flow,, Journal of Computational Physics, 189 (2003), 651.  doi: 10.1016/S0021-9991(03)00251-1.  Google Scholar

[10]

C. Chaplin and P. Colella, A single stage flux-corrected transport algorithm for high-order finite-volume methods,, preprint, ().   Google Scholar

[11]

I.-L. Chern and P. Colella, A conservative front tracking method for hyperbolic conservation laws,, Technical Report UCRL-97200, (1987).   Google Scholar

[12]

P. Colella, Multidimensional upwind methods for hyperbolic conservation laws,, Journal of Computational Physics, 87 (1990), 171.  doi: 10.1016/0021-9991(90)90233-Q.  Google Scholar

[13]

P. Colella, Volume-of-fluid methods for partial differential equations,, In Godunov Methods: Theory and Applications, (2001), 161.   Google Scholar

[14]

P. Colella, M.R. Dorr, J. A. F. Hittinger and D. F. Martin, High-order, finite-volume methods in mapped coordinates,, Journal of Computational Physics, 230 (2011), 2952.  doi: 10.1016/j.jcp.2010.12.044.  Google Scholar

[15]

P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema,, Journal of Computational Physics, 227 (2008), 7069.  doi: 10.1016/j.jcp.2008.03.034.  Google Scholar

[16]

P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations,, Journal of Computational Physics, 54 (1989), 174.  doi: 10.1016/0021-9991(84)90143-8.  Google Scholar

[17]

D. Devendran, D. T. Graves and H. Johansen, A higher-order finite-volume discretization method for Poisson's equation in cut cell geometries,, preprint, ().   Google Scholar

[18]

C. Gatti-Bono and P. Colella, An anelastic allspeed projection method for gravitationally stratified flows,, Journal of Computational Physics, 216 (2006), 589.  doi: 10.1016/j.jcp.2005.12.017.  Google Scholar

[19]

S. M. Guzik, X. Gao, L. D. Owen, P. McCorquodale and P. Colella, A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive mesh refinement,, Computers and Fluids, 123 (2015), 202.  doi: 10.1016/j.compfluid.2015.10.001.  Google Scholar

[20]

J. Hilditch and P. Colella, A Projection Method for Low Mach Number Fast Chemistry Reacting Flow,, Technical Report AIAA-97-0263, (1997), 97.  doi: 10.2514/6.1997-263.  Google Scholar

[21]

H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson's equation on irregular domains,, Journal of Computational Physics, 147 (1998), 60.  doi: 10.1006/jcph.1998.5965.  Google Scholar

[22]

C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations,, Applied Numerical Mathematics, 44 (2003), 139.  doi: 10.1016/S0168-9274(02)00138-1.  Google Scholar

[23]

H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations,, Tellus, 24 (1972), 199.  doi: 10.1111/j.2153-3490.1972.tb01547.x.  Google Scholar

[24]

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,, Communications on Pure and Applied Mathematics 7 (1954), 7 (1954), 159.  doi: 10.1002/cpa.3160070112.  Google Scholar

[25]

P. D. Lax, On Discontinuous Initial-Value Problems and Finite-Difference Schemes,, Technical Report LAMS-1332, (1952).   Google Scholar

[26]

P. D. Lax and B. Wendroff, Systems of conservation laws,, Communications on Pure and Applied Mathematics, 13 (1960), 217.  doi: 10.1002/cpa.3160130205.  Google Scholar

[27]

R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach,, IEEE Transactions on Pattern Anal. Machine Intell, 17 (1995), 158.  doi: 10.1109/34.368173.  Google Scholar

[28]

P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on locally refined grids,, Communications in Applied Mathematics and Computational Science 6 (2011), 6 (2011), 1.  doi: 10.2140/camcos.2011.6.1.  Google Scholar

[29]

P. McCorquodale, P. Colella and H. Johansen, A Cartesian grid embedded boundary method for the heat equation on irregular domains,, Journal of Computational Physics, 173 (2001), 620.  doi: 10.1006/jcph.2001.6900.  Google Scholar

[30]

P. McCorquodale, M. R. Dorr, J. A. F. Hittinger and P. Colella, High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids,, Journal of Computational Physics, 288 (2015), 181.  doi: 10.1016/j.jcp.2015.01.006.  Google Scholar

[31]

L. I. Millett and S. H. Fuller, et al., The Future of Computing Performance: Game Over or Next Level?,, National Academies Press, (2011).   Google Scholar

[32]

J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, Journal of Applied Physics, 21 (1950), 232.  doi: 10.1063/1.1699639.  Google Scholar

[33]

W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian - Lagrangian code,, Methods in Computational Physics, 3 (1964), 117.   Google Scholar

[34]

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield and M. L. Welcome, An adaptive Cartesian} grid method for unsteady compressible flow in irregular regions,, Journal of Computational Physics, 120 (1995), 278.  doi: 10.1006/jcph.1995.1165.  Google Scholar

[35]

R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland and J. P. Jessee, An adaptive projection method for unsteady, low-Mach-number combustion,, Combustion Science and Technology, 140 (1998), 123.  doi: 10.1080/00102209808915770.  Google Scholar

[36]

J. S. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws,, Journal of Computational Physics, 115 (1994), 153.  doi: 10.1006/jcph.1994.1184.  Google Scholar

[37]

P. Schwartz, J. Percelay, T. Ligocki, H. Johansen, D. Graves, D. Devendran, P. Colella and E. Ateljevich, High-accuracy embedded boundary grid generation using the divergence theorem,, Communications in Applied Mathematics and Computational Science, 10 (2015), 83.  doi: 10.2140/camcos.2015.10.83.  Google Scholar

[38]

D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel and C. Shen, High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration,, Computing in Science and Engineering, 16 (2014), 22.  doi: 10.1109/MCSE.2014.77.  Google Scholar

[39]

B. van Leer, Towards the ultimate conservative differences scheme IV: a new approach to numerical convection,, Journal of Computational Physics, 23 (1977), 263.   Google Scholar

[40]

S. Williams, A. Waterman and D. Patterson, Roofline: an insightful visual performance model for multicore architectures,, Communications of the ACM, 52 (2009), 65.  doi: 10.1145/1498765.1498785.  Google Scholar

[41]

P. R. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks,, Journal of Computational Physics, 54 (1984), 115.  doi: 10.1016/0021-9991(84)90142-6.  Google Scholar

[42]

S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids,, Journal of Computational Physics, 31 (1979), 335.  doi: 10.1016/0021-9991(79)90051-2.  Google Scholar

[43]

S. T. Zalesak, A physical interpretation of the Richtmyer two-step Lax-Wendroff scheme and its generalization to higher spatial order,, in Advances in Computer Methods for Partial Differential Equations, (1984), 19.   Google Scholar

show all references

References:
[1]

M. Aftosmis, M. Berger and J. Melton, Robust and efficient Cartesian mesh generation for component-based geometry,, AIAA Journal, 6 (1998), 952.  doi: 10.2514/6.1997-196.  Google Scholar

[2]

M. Barad and P. Colella, A fourth-order accurate local refinement method for Poisson's equation,, Journal of Computational Physics, 209 (2005), 1.  doi: 10.1016/j.jcp.2005.02.027.  Google Scholar

[3]

P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker and P. Colella, Compiler-directed transformation for higher-order stencils,, in Proceedings of the Parallel and Distributed Processing Symposium (IPDPS), (2015), 313.  doi: 10.1109/IPDPS.2015.103.  Google Scholar

[4]

J. B. Bell, P. Colella and M. Welcome, A conservative front-tracking for inviscid compressible flow,, in Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, (1991), 814.  doi: 10.2514/6.1991-1599.  Google Scholar

[5]

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics,, Journal of Computational Physics, 82 (1989), 64.  doi: 10.1016/0021-9991(89)90035-1.  Google Scholar

[6]

M. J. Berger and A. Jameson, Automatic adaptive grid refinement for the Euler equations,, AIAA Journal, 23 (1985), 561.  doi: 10.2514/3.8951.  Google Scholar

[7]

M. J. Berger and R. J. LeVeque, An adaptive Cartesian mesh algorithm for the euler equations in arbitrary geometries,, in Proceedings of the AIAA 9th Computational Fluid Dynamics Conference, (1989), 1.  doi: 10.2514/6.1989-1930.  Google Scholar

[8]

J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works,, Journal of Computational Physics, 11 (1973), 38.  doi: 10.1016/0021-9991(73)90147-2.  Google Scholar

[9]

A. Bourlioux, A. T. Layton and M. L. Minion, Higher-order multi-implicit spectral deferred correction methods for problems of reacting flow,, Journal of Computational Physics, 189 (2003), 651.  doi: 10.1016/S0021-9991(03)00251-1.  Google Scholar

[10]

C. Chaplin and P. Colella, A single stage flux-corrected transport algorithm for high-order finite-volume methods,, preprint, ().   Google Scholar

[11]

I.-L. Chern and P. Colella, A conservative front tracking method for hyperbolic conservation laws,, Technical Report UCRL-97200, (1987).   Google Scholar

[12]

P. Colella, Multidimensional upwind methods for hyperbolic conservation laws,, Journal of Computational Physics, 87 (1990), 171.  doi: 10.1016/0021-9991(90)90233-Q.  Google Scholar

[13]

P. Colella, Volume-of-fluid methods for partial differential equations,, In Godunov Methods: Theory and Applications, (2001), 161.   Google Scholar

[14]

P. Colella, M.R. Dorr, J. A. F. Hittinger and D. F. Martin, High-order, finite-volume methods in mapped coordinates,, Journal of Computational Physics, 230 (2011), 2952.  doi: 10.1016/j.jcp.2010.12.044.  Google Scholar

[15]

P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema,, Journal of Computational Physics, 227 (2008), 7069.  doi: 10.1016/j.jcp.2008.03.034.  Google Scholar

[16]

P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations,, Journal of Computational Physics, 54 (1989), 174.  doi: 10.1016/0021-9991(84)90143-8.  Google Scholar

[17]

D. Devendran, D. T. Graves and H. Johansen, A higher-order finite-volume discretization method for Poisson's equation in cut cell geometries,, preprint, ().   Google Scholar

[18]

C. Gatti-Bono and P. Colella, An anelastic allspeed projection method for gravitationally stratified flows,, Journal of Computational Physics, 216 (2006), 589.  doi: 10.1016/j.jcp.2005.12.017.  Google Scholar

[19]

S. M. Guzik, X. Gao, L. D. Owen, P. McCorquodale and P. Colella, A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive mesh refinement,, Computers and Fluids, 123 (2015), 202.  doi: 10.1016/j.compfluid.2015.10.001.  Google Scholar

[20]

J. Hilditch and P. Colella, A Projection Method for Low Mach Number Fast Chemistry Reacting Flow,, Technical Report AIAA-97-0263, (1997), 97.  doi: 10.2514/6.1997-263.  Google Scholar

[21]

H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson's equation on irregular domains,, Journal of Computational Physics, 147 (1998), 60.  doi: 10.1006/jcph.1998.5965.  Google Scholar

[22]

C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations,, Applied Numerical Mathematics, 44 (2003), 139.  doi: 10.1016/S0168-9274(02)00138-1.  Google Scholar

[23]

H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations,, Tellus, 24 (1972), 199.  doi: 10.1111/j.2153-3490.1972.tb01547.x.  Google Scholar

[24]

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,, Communications on Pure and Applied Mathematics 7 (1954), 7 (1954), 159.  doi: 10.1002/cpa.3160070112.  Google Scholar

[25]

P. D. Lax, On Discontinuous Initial-Value Problems and Finite-Difference Schemes,, Technical Report LAMS-1332, (1952).   Google Scholar

[26]

P. D. Lax and B. Wendroff, Systems of conservation laws,, Communications on Pure and Applied Mathematics, 13 (1960), 217.  doi: 10.1002/cpa.3160130205.  Google Scholar

[27]

R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach,, IEEE Transactions on Pattern Anal. Machine Intell, 17 (1995), 158.  doi: 10.1109/34.368173.  Google Scholar

[28]

P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on locally refined grids,, Communications in Applied Mathematics and Computational Science 6 (2011), 6 (2011), 1.  doi: 10.2140/camcos.2011.6.1.  Google Scholar

[29]

P. McCorquodale, P. Colella and H. Johansen, A Cartesian grid embedded boundary method for the heat equation on irregular domains,, Journal of Computational Physics, 173 (2001), 620.  doi: 10.1006/jcph.2001.6900.  Google Scholar

[30]

P. McCorquodale, M. R. Dorr, J. A. F. Hittinger and P. Colella, High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids,, Journal of Computational Physics, 288 (2015), 181.  doi: 10.1016/j.jcp.2015.01.006.  Google Scholar

[31]

L. I. Millett and S. H. Fuller, et al., The Future of Computing Performance: Game Over or Next Level?,, National Academies Press, (2011).   Google Scholar

[32]

J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, Journal of Applied Physics, 21 (1950), 232.  doi: 10.1063/1.1699639.  Google Scholar

[33]

W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian - Lagrangian code,, Methods in Computational Physics, 3 (1964), 117.   Google Scholar

[34]

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield and M. L. Welcome, An adaptive Cartesian} grid method for unsteady compressible flow in irregular regions,, Journal of Computational Physics, 120 (1995), 278.  doi: 10.1006/jcph.1995.1165.  Google Scholar

[35]

R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland and J. P. Jessee, An adaptive projection method for unsteady, low-Mach-number combustion,, Combustion Science and Technology, 140 (1998), 123.  doi: 10.1080/00102209808915770.  Google Scholar

[36]

J. S. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws,, Journal of Computational Physics, 115 (1994), 153.  doi: 10.1006/jcph.1994.1184.  Google Scholar

[37]

P. Schwartz, J. Percelay, T. Ligocki, H. Johansen, D. Graves, D. Devendran, P. Colella and E. Ateljevich, High-accuracy embedded boundary grid generation using the divergence theorem,, Communications in Applied Mathematics and Computational Science, 10 (2015), 83.  doi: 10.2140/camcos.2015.10.83.  Google Scholar

[38]

D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel and C. Shen, High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration,, Computing in Science and Engineering, 16 (2014), 22.  doi: 10.1109/MCSE.2014.77.  Google Scholar

[39]

B. van Leer, Towards the ultimate conservative differences scheme IV: a new approach to numerical convection,, Journal of Computational Physics, 23 (1977), 263.   Google Scholar

[40]

S. Williams, A. Waterman and D. Patterson, Roofline: an insightful visual performance model for multicore architectures,, Communications of the ACM, 52 (2009), 65.  doi: 10.1145/1498765.1498785.  Google Scholar

[41]

P. R. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks,, Journal of Computational Physics, 54 (1984), 115.  doi: 10.1016/0021-9991(84)90142-6.  Google Scholar

[42]

S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids,, Journal of Computational Physics, 31 (1979), 335.  doi: 10.1016/0021-9991(79)90051-2.  Google Scholar

[43]

S. T. Zalesak, A physical interpretation of the Richtmyer two-step Lax-Wendroff scheme and its generalization to higher spatial order,, in Advances in Computer Methods for Partial Differential Equations, (1984), 19.   Google Scholar

[1]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[2]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[3]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[4]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[5]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[6]

Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427

[7]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[8]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[9]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[10]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[11]

Cesare Bracco, Annalisa Buffa, Carlotta Giannelli, Rafael Vázquez. Adaptive isogeometric methods with hierarchical splines: An overview. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 241-261. doi: 10.3934/dcds.2019010

[12]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[13]

Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913

[14]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[15]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[16]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[17]

Christopher Rackauckas, Qing Nie. Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2731-2761. doi: 10.3934/dcdsb.2017133

[18]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[19]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[20]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]