August  2016, 36(8): 4271-4285. doi: 10.3934/dcds.2016.36.4271

Hyperbolic balance laws with relaxation

1. 

Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

Received  May 2015 Revised  August 2015 Published  March 2016

This expository paper surveys the progress in a research program aiming at establishing the existence and long time behavior of $BV$ solutions to the Cauchy problem for hyperbolic systems of balance laws modeling relaxation phenomena.
Citation: Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271
References:
[1]

D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation,, Nonlinear Anal., 49 (2002), 987.  doi: 10.1016/S0362-546X(01)00721-0.  Google Scholar

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Ann.of Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, Comm. Pure Appl. Math., 60 (2007), 1559.  doi: 10.1002/cpa.20195.  Google Scholar

[4]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[5]

C. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity,, J. Differential Equations, 221 (2006), 470.  doi: 10.1016/j.jde.2005.03.010.  Google Scholar

[6]

C. M. Dafermos, Hyperbolic systems of balance laws with weak dissipation,, J. Hyperbolic Differ. Equ., 3 (2006), 507.  doi: 10.1142/S0219891606000884.  Google Scholar

[7]

C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation,, J. Differential Equations, 255 (2013), 2521.  doi: 10.1016/j.jde.2013.07.002.  Google Scholar

[8]

C. M. Dafermos, Redistribution of damping in viscoelasticity,, Comm. Partial Differential Equations, 38 (2013), 1274.  doi: 10.1080/03605302.2012.755544.  Google Scholar

[9]

C. M. Dafermos, Heat flow with shocks in media with memory,, Indiana U. Math. J., 62 (2013), 1443.  doi: 10.1512/iumj.2013.62.5126.  Google Scholar

[10]

C. M. Dafermos, Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity,, Commun. Inf. Syst., 13 (2013), 201.  doi: 10.4310/CIS.2013.v13.n2.a4.  Google Scholar

[11]

C. M. Dafermos, BV solutions of hyperbolic balance laws with relaxation in the absence of conserved quantities,, SIAM J. Math. Analysis, 46 (2014), 4014.  doi: 10.1137/14096075X.  Google Scholar

[12]

C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation,, J. Hyperbolic Differ. Equ., 12 (2015), 277.  doi: 10.1142/S0219891615500083.  Google Scholar

[13]

C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation,, Indiana Univ. Math. J., 31 (1982), 471.  doi: 10.1512/iumj.1982.31.31039.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

P. D. Lax, Hyperbolic systems of conservation laws,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[16]

T.-P. Liu, Admissible solutions of hyperbolic conservation laws,, Memoirs AMS, 30 (1981).  doi: 10.1090/memo/0240.  Google Scholar

[17]

T. Ruggeri and D. Serre, Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy,, Quart. Appl. Math., 62 (2004), 163.   Google Scholar

[18]

H. Zeng, A class of initial value problems for $2\times 2$ hyperbolic systems with relaxation,, J. Differential Equations, 251 (2011), 1254.  doi: 10.1016/j.jde.2011.05.018.  Google Scholar

show all references

References:
[1]

D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation,, Nonlinear Anal., 49 (2002), 987.  doi: 10.1016/S0362-546X(01)00721-0.  Google Scholar

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Ann.of Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, Comm. Pure Appl. Math., 60 (2007), 1559.  doi: 10.1002/cpa.20195.  Google Scholar

[4]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[5]

C. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity,, J. Differential Equations, 221 (2006), 470.  doi: 10.1016/j.jde.2005.03.010.  Google Scholar

[6]

C. M. Dafermos, Hyperbolic systems of balance laws with weak dissipation,, J. Hyperbolic Differ. Equ., 3 (2006), 507.  doi: 10.1142/S0219891606000884.  Google Scholar

[7]

C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation,, J. Differential Equations, 255 (2013), 2521.  doi: 10.1016/j.jde.2013.07.002.  Google Scholar

[8]

C. M. Dafermos, Redistribution of damping in viscoelasticity,, Comm. Partial Differential Equations, 38 (2013), 1274.  doi: 10.1080/03605302.2012.755544.  Google Scholar

[9]

C. M. Dafermos, Heat flow with shocks in media with memory,, Indiana U. Math. J., 62 (2013), 1443.  doi: 10.1512/iumj.2013.62.5126.  Google Scholar

[10]

C. M. Dafermos, Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity,, Commun. Inf. Syst., 13 (2013), 201.  doi: 10.4310/CIS.2013.v13.n2.a4.  Google Scholar

[11]

C. M. Dafermos, BV solutions of hyperbolic balance laws with relaxation in the absence of conserved quantities,, SIAM J. Math. Analysis, 46 (2014), 4014.  doi: 10.1137/14096075X.  Google Scholar

[12]

C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation,, J. Hyperbolic Differ. Equ., 12 (2015), 277.  doi: 10.1142/S0219891615500083.  Google Scholar

[13]

C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation,, Indiana Univ. Math. J., 31 (1982), 471.  doi: 10.1512/iumj.1982.31.31039.  Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[15]

P. D. Lax, Hyperbolic systems of conservation laws,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[16]

T.-P. Liu, Admissible solutions of hyperbolic conservation laws,, Memoirs AMS, 30 (1981).  doi: 10.1090/memo/0240.  Google Scholar

[17]

T. Ruggeri and D. Serre, Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy,, Quart. Appl. Math., 62 (2004), 163.   Google Scholar

[18]

H. Zeng, A class of initial value problems for $2\times 2$ hyperbolic systems with relaxation,, J. Differential Equations, 251 (2011), 1254.  doi: 10.1016/j.jde.2011.05.018.  Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]