\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hyperbolic balance laws with relaxation

Abstract / Introduction Related Papers Cited by
  • This expository paper surveys the progress in a research program aiming at establishing the existence and long time behavior of $BV$ solutions to the Cauchy problem for hyperbolic systems of balance laws modeling relaxation phenomena.
    Mathematics Subject Classification: Primary: 35L65, 35L67; Secondary: 35B40, 35Q31, 45K05, 74D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation, Nonlinear Anal., 49 (2002), 987-1014.doi: 10.1016/S0362-546X(01)00721-0.

    [2]

    S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann.of Math., 161 (2005), 223-342.doi: 10.4007/annals.2005.161.223.

    [3]

    S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622.doi: 10.1002/cpa.20195.

    [4]

    A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford 2000.

    [5]

    C. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity, J. Differential Equations, 221 (2006), 470-541.doi: 10.1016/j.jde.2005.03.010.

    [6]

    C. M. Dafermos, Hyperbolic systems of balance laws with weak dissipation, J. Hyperbolic Differ. Equ., 3 (2006), 507-527.doi: 10.1142/S0219891606000884.

    [7]

    C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation, J. Differential Equations, 255 (2013), 2521-2533.doi: 10.1016/j.jde.2013.07.002.

    [8]

    C. M. Dafermos, Redistribution of damping in viscoelasticity, Comm. Partial Differential Equations, 38 (2013), 1274-1286.doi: 10.1080/03605302.2012.755544.

    [9]

    C. M. Dafermos, Heat flow with shocks in media with memory, Indiana U. Math. J., 62 (2013), 1443-1456.doi: 10.1512/iumj.2013.62.5126.

    [10]

    C. M. Dafermos, Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity, Commun. Inf. Syst., 13 (2013), 201-209.doi: 10.4310/CIS.2013.v13.n2.a4.

    [11]

    C. M. Dafermos, BV solutions of hyperbolic balance laws with relaxation in the absence of conserved quantities, SIAM J. Math. Analysis, 46 (2014), 4014-4034.doi: 10.1137/14096075X.

    [12]

    C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation, J. Hyperbolic Differ. Equ., 12 (2015), 277-292.doi: 10.1142/S0219891615500083.

    [13]

    C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471-491.doi: 10.1512/iumj.1982.31.31039.

    [14]

    J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715.doi: 10.1002/cpa.3160180408.

    [15]

    P. D. Lax, Hyperbolic systems of conservation laws, Comm. Pure Appl. Math., 10 (1957), 537-566.doi: 10.1002/cpa.3160100406.

    [16]

    T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Memoirs AMS, 30 (1981), iv+78 pp.doi: 10.1090/memo/0240.

    [17]

    T. Ruggeri and D. Serre, Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy, Quart. Appl. Math., 62 (2004), 163-179.

    [18]

    H. Zeng, A class of initial value problems for $2\times 2$ hyperbolic systems with relaxation, J. Differential Equations, 251 (2011), 1254-1275.doi: 10.1016/j.jde.2011.05.018.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(309) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return