August  2016, 36(8): 4349-4366. doi: 10.3934/dcds.2016.36.4349

A thermodynamic study of the two-dimensional pressure-driven channel flow

1. 

Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544

2. 

The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, United States

Received  May 2015 Revised  November 2015 Published  March 2016

The instability of the two-dimensional Poiseuille flow in a long channel and the subsequent transition is studied using a thermodynamic approach. The idea is to view the transition process as an initial value problem with the initial condition being Poiseuille flow plus noise, which is considered as our ensemble. Using the mean energy of the velocity fluctuation and the skin friction coefficient as the macrostate variable, we analyze the transition process triggered by the initial noises with different amplitudes. A first order transition is observed at the critical Reynolds number $Re_* \sim 5772$ in the limit of zero noise. An action function, which relates the mean energy with the noise amplitude, is defined and computed. The action function depends only on the Reynolds number, and represents the cost for the noise to trigger a transition from the laminar flow. The correlation function of the spatial structure is analyzed.
Citation: Weinan E, Jianchun Wang. A thermodynamic study of the two-dimensional pressure-driven channel flow. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4349-4366. doi: 10.3934/dcds.2016.36.4349
References:
[1]

K. T. Allhoff and B. Eckhardt, Directed percolation model for turbulence transition in shear flows,, Fluid Dyn. Res., 44 (2012). Google Scholar

[2]

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley and B. Hof, The onset of turbulence in pipe flow,, Science, 333 (2011), 192. Google Scholar

[3]

M. Avila, F. Mellibovsky, N. Roland and B. Hof, Streamwise-localized solutions at the onset of turbulence in pipe Flow,, Phys. Rev. Lett., 110 (2013). Google Scholar

[4]

D. Barkley, Simplifying the complexity of pipe flow,, Phys Rev E, 84 (2011). Google Scholar

[5]

D. Barkley, Modeling the transition to turbulence in shear flows,, J. Phys.: Conf. Ser., 318 (2011). Google Scholar

[6]

P. S. Casasa and À. Jorbab, Hopf bifurcations to quasi-periodic solutions for the two-dimensional plane Poiseuille flow,, Comm. Nonlinear. Sci. Numer. Simulat., 17 (2012), 2864. doi: 10.1016/j.cnsns.2011.11.008. Google Scholar

[7]

M. Chantry, A. P. Willis and R. R. Kerswell, Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow,, Phys. Rev. Lett., 112 (2014). Google Scholar

[8]

B. Eckhardt, T. M. Schneider, B. Hof and J. Westerweel, Turbulence transition in pipe flow,, Annu. Rev. Fluid Mech., 39 (2007), 447. doi: 10.1146/annurev.fluid.39.050905.110308. Google Scholar

[9]

H. Faisst and B. Eckhardt, Traveling waves in pipe flow,, Phys. Rev. Lett., 91 (2003). Google Scholar

[10]

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems,, 2nd edn (New York: Springer), (1998). doi: 10.1007/978-1-4612-0611-8. Google Scholar

[11]

T. Herbert, Secondary instability of boundary layers,, Annu. Rev. Fluid Mech., 20 (1988), 487. Google Scholar

[12]

B. Hof, J. Westerweel, T. M. Schneider and B. Eckhardt, Finite lifetime of turbulence in shear flows,, Nature, 443 (2006), 59. Google Scholar

[13]

J. Jimenez, Bifurcations and bursting in two-dimensional Poiseuille flow,, Phys. Fluids, 30 (1987), 3644. Google Scholar

[14]

J. Jimenez, Transition to turbulence in two-dimensional Poiseuille flow,, J. Fluid Mech., 218 (1990), 265. Google Scholar

[15]

T. Kreilos and B. Eckhardt, Periodic orbits near onset of chaos in plane Couette flow,, Chaos, 22 (2012). doi: 10.1063/1.4757227. Google Scholar

[16]

T. Kreilos, B. Eckhardt and T. M. Schneider, Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence,, Phys. Rev. Lett., 112 (2014). Google Scholar

[17]

P. Manneville, Spatiotemporal perspective on the decay of turbulence in wall-bounded flows,, Phys Rev E, 79 (2009). Google Scholar

[18]

P. Manneville, On the growth of laminar-turbulent patterns in plane Couette flow,, Fluid Dyn. Res., 44 (2012). doi: 10.1088/0169-5983/44/3/031412. Google Scholar

[19]

F. Mellibovsky and B. Eckhardt, From travelling waves to mild chaos: A supercritical bifurcation cascade in pipe flow,, J. Fluid Mech., 709 (2012), 149. doi: 10.1017/jfm.2012.326. Google Scholar

[20]

D. Moxey and D. Barkley, Distinct large-scale turbulent-laminar states in transitional pipe flow,, Proc. Natl. Acad. Sci. USA, 107 (2010), 8091. Google Scholar

[21]

M. Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity,, J. Fluid Mech., 217 (1990), 519. doi: 10.1017/S0022112090000829. Google Scholar

[22]

M. Nagata and K Deguchi, Mirror-symmetric exact coherent states in plane Poiseuille flow,, J. Fluid Mech., 735 (2013). Google Scholar

[23]

S. A. Orszag and A. T. Patera, Subcritical transition to turbulence in plane channel flows,, Phys. Rev. Lett., 45 (1980), 989. Google Scholar

[24]

C. Pringle and R. R. Kerswell, Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow,, Phys. Rev. Lett., 99 (2007). Google Scholar

[25]

Y. Pomeau, Front motion, metastability and subcritical bifurcations in hydrodynamics,, Physica D, 23 (1986), 3. Google Scholar

[26]

O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,, Philos. T. R. Soc. A, 174 (1883), 935. Google Scholar

[27]

B. L. Rozhdestvensky and I. N. Simakin, Secondary flows in a plane channel: their relationship and comparison with turbulent flows,, J. Fluid. Mech., 147 (1984), 261. Google Scholar

[28]

T. M. Schneider, D. Marinc and B. Eckhardt, Localized edge states nucleate turbulence in extended plane Couette cells,, J Fluid Mech, 646 (2010), 441. Google Scholar

[29]

J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489. doi: 10.1137/0915089. Google Scholar

[30]

L. Shi, M. Avila and B. Hof, Scale invariance at the onset of turbulence in couette flow,, Phys. Rev. Lett., 110 (2013). Google Scholar

[31]

L. Trefethen, A. Trefethen, S. Reddy and T. Driscoll, Hydrodynamic stability without eigenvalues,, Science, 261 (1993), 573. doi: 10.1126/science.261.5121.578. Google Scholar

[32]

L. Trefethen, Pseudospectra of linear operators,, SIAM Rev., 39 (1997), 383. doi: 10.1137/S0036144595295284. Google Scholar

[33]

X. Wan, H. Yu and W. E, Model the nonlinear instability of wall-bounded shear flows as a rare event: A study on two-dimensional Poiseuille flow,, Nonlinearity, 28 (2015), 1409. doi: 10.1088/0951-7715/28/5/1409. Google Scholar

[34]

J. Wang, Q. Li and W. E, Study of the instability of the Poiseuille flow using a thermodynamic formalism,, Proc. Natl. Acad. Sci. USA, 112 (2015), 9518. Google Scholar

[35]

F. Waleffe, Three-dimensional coherent states in plane shear flows,, Phys. Rev. Lett., 81 (1998), 4140. Google Scholar

[36]

F. Waleffe, Exact coherent structures in channel flow,, J. Fluid Mech., 435 (2001), 93. Google Scholar

[37]

H. Wedin and R. R. Kerswell, Exact coherent structures in pipe flow: Traveling wave solutions,, J. Fluid Mech., 508 (2004), 333. doi: 10.1017/S0022112004009346. Google Scholar

[38]

A. P. Willis, P. Cvitanovi and M. Avila, Revealing the state space of turbulent pipe flow by symmetry reduction,, J. Fluid Mech., 721 (2013), 514. doi: 10.1017/jfm.2013.75. Google Scholar

[39]

S. Zammert and B. Eckhardt, Streamwise and doubly-localised periodic orbits in plane Poiseuille flow,, J. Fluid Mech., 761 (2014), 348. Google Scholar

[40]

S. Zammert and B. Eckhardt, Periodically bursting edge states in plane Poiseuille flow,, Fluid Dyn. Res., 46 (2014). doi: 10.1088/0169-5983/46/4/041419. Google Scholar

show all references

References:
[1]

K. T. Allhoff and B. Eckhardt, Directed percolation model for turbulence transition in shear flows,, Fluid Dyn. Res., 44 (2012). Google Scholar

[2]

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley and B. Hof, The onset of turbulence in pipe flow,, Science, 333 (2011), 192. Google Scholar

[3]

M. Avila, F. Mellibovsky, N. Roland and B. Hof, Streamwise-localized solutions at the onset of turbulence in pipe Flow,, Phys. Rev. Lett., 110 (2013). Google Scholar

[4]

D. Barkley, Simplifying the complexity of pipe flow,, Phys Rev E, 84 (2011). Google Scholar

[5]

D. Barkley, Modeling the transition to turbulence in shear flows,, J. Phys.: Conf. Ser., 318 (2011). Google Scholar

[6]

P. S. Casasa and À. Jorbab, Hopf bifurcations to quasi-periodic solutions for the two-dimensional plane Poiseuille flow,, Comm. Nonlinear. Sci. Numer. Simulat., 17 (2012), 2864. doi: 10.1016/j.cnsns.2011.11.008. Google Scholar

[7]

M. Chantry, A. P. Willis and R. R. Kerswell, Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow,, Phys. Rev. Lett., 112 (2014). Google Scholar

[8]

B. Eckhardt, T. M. Schneider, B. Hof and J. Westerweel, Turbulence transition in pipe flow,, Annu. Rev. Fluid Mech., 39 (2007), 447. doi: 10.1146/annurev.fluid.39.050905.110308. Google Scholar

[9]

H. Faisst and B. Eckhardt, Traveling waves in pipe flow,, Phys. Rev. Lett., 91 (2003). Google Scholar

[10]

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems,, 2nd edn (New York: Springer), (1998). doi: 10.1007/978-1-4612-0611-8. Google Scholar

[11]

T. Herbert, Secondary instability of boundary layers,, Annu. Rev. Fluid Mech., 20 (1988), 487. Google Scholar

[12]

B. Hof, J. Westerweel, T. M. Schneider and B. Eckhardt, Finite lifetime of turbulence in shear flows,, Nature, 443 (2006), 59. Google Scholar

[13]

J. Jimenez, Bifurcations and bursting in two-dimensional Poiseuille flow,, Phys. Fluids, 30 (1987), 3644. Google Scholar

[14]

J. Jimenez, Transition to turbulence in two-dimensional Poiseuille flow,, J. Fluid Mech., 218 (1990), 265. Google Scholar

[15]

T. Kreilos and B. Eckhardt, Periodic orbits near onset of chaos in plane Couette flow,, Chaos, 22 (2012). doi: 10.1063/1.4757227. Google Scholar

[16]

T. Kreilos, B. Eckhardt and T. M. Schneider, Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence,, Phys. Rev. Lett., 112 (2014). Google Scholar

[17]

P. Manneville, Spatiotemporal perspective on the decay of turbulence in wall-bounded flows,, Phys Rev E, 79 (2009). Google Scholar

[18]

P. Manneville, On the growth of laminar-turbulent patterns in plane Couette flow,, Fluid Dyn. Res., 44 (2012). doi: 10.1088/0169-5983/44/3/031412. Google Scholar

[19]

F. Mellibovsky and B. Eckhardt, From travelling waves to mild chaos: A supercritical bifurcation cascade in pipe flow,, J. Fluid Mech., 709 (2012), 149. doi: 10.1017/jfm.2012.326. Google Scholar

[20]

D. Moxey and D. Barkley, Distinct large-scale turbulent-laminar states in transitional pipe flow,, Proc. Natl. Acad. Sci. USA, 107 (2010), 8091. Google Scholar

[21]

M. Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity,, J. Fluid Mech., 217 (1990), 519. doi: 10.1017/S0022112090000829. Google Scholar

[22]

M. Nagata and K Deguchi, Mirror-symmetric exact coherent states in plane Poiseuille flow,, J. Fluid Mech., 735 (2013). Google Scholar

[23]

S. A. Orszag and A. T. Patera, Subcritical transition to turbulence in plane channel flows,, Phys. Rev. Lett., 45 (1980), 989. Google Scholar

[24]

C. Pringle and R. R. Kerswell, Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow,, Phys. Rev. Lett., 99 (2007). Google Scholar

[25]

Y. Pomeau, Front motion, metastability and subcritical bifurcations in hydrodynamics,, Physica D, 23 (1986), 3. Google Scholar

[26]

O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,, Philos. T. R. Soc. A, 174 (1883), 935. Google Scholar

[27]

B. L. Rozhdestvensky and I. N. Simakin, Secondary flows in a plane channel: their relationship and comparison with turbulent flows,, J. Fluid. Mech., 147 (1984), 261. Google Scholar

[28]

T. M. Schneider, D. Marinc and B. Eckhardt, Localized edge states nucleate turbulence in extended plane Couette cells,, J Fluid Mech, 646 (2010), 441. Google Scholar

[29]

J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489. doi: 10.1137/0915089. Google Scholar

[30]

L. Shi, M. Avila and B. Hof, Scale invariance at the onset of turbulence in couette flow,, Phys. Rev. Lett., 110 (2013). Google Scholar

[31]

L. Trefethen, A. Trefethen, S. Reddy and T. Driscoll, Hydrodynamic stability without eigenvalues,, Science, 261 (1993), 573. doi: 10.1126/science.261.5121.578. Google Scholar

[32]

L. Trefethen, Pseudospectra of linear operators,, SIAM Rev., 39 (1997), 383. doi: 10.1137/S0036144595295284. Google Scholar

[33]

X. Wan, H. Yu and W. E, Model the nonlinear instability of wall-bounded shear flows as a rare event: A study on two-dimensional Poiseuille flow,, Nonlinearity, 28 (2015), 1409. doi: 10.1088/0951-7715/28/5/1409. Google Scholar

[34]

J. Wang, Q. Li and W. E, Study of the instability of the Poiseuille flow using a thermodynamic formalism,, Proc. Natl. Acad. Sci. USA, 112 (2015), 9518. Google Scholar

[35]

F. Waleffe, Three-dimensional coherent states in plane shear flows,, Phys. Rev. Lett., 81 (1998), 4140. Google Scholar

[36]

F. Waleffe, Exact coherent structures in channel flow,, J. Fluid Mech., 435 (2001), 93. Google Scholar

[37]

H. Wedin and R. R. Kerswell, Exact coherent structures in pipe flow: Traveling wave solutions,, J. Fluid Mech., 508 (2004), 333. doi: 10.1017/S0022112004009346. Google Scholar

[38]

A. P. Willis, P. Cvitanovi and M. Avila, Revealing the state space of turbulent pipe flow by symmetry reduction,, J. Fluid Mech., 721 (2013), 514. doi: 10.1017/jfm.2013.75. Google Scholar

[39]

S. Zammert and B. Eckhardt, Streamwise and doubly-localised periodic orbits in plane Poiseuille flow,, J. Fluid Mech., 761 (2014), 348. Google Scholar

[40]

S. Zammert and B. Eckhardt, Periodically bursting edge states in plane Poiseuille flow,, Fluid Dyn. Res., 46 (2014). doi: 10.1088/0169-5983/46/4/041419. Google Scholar

[1]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[2]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[3]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[4]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[5]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[6]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[7]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[8]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[9]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[10]

Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks & Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030

[11]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[12]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[13]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[14]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[15]

Da-Peng Li. Phase transition of oscillators and travelling waves in a class of relaxation systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2601-2614. doi: 10.3934/dcdsb.2016063

[16]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[17]

Alethea B. T. Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1249-1278. doi: 10.3934/dcdsb.2014.19.1249

[18]

Kota Kumazaki. Periodic solutions for non-isothermal phase transition models. Conference Publications, 2011, 2011 (Special) : 891-902. doi: 10.3934/proc.2011.2011.891

[19]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[20]

Kousuke Kuto, Tohru Tsujikawa. Stationary patterns for an adsorbate-induced phase transition model I: Existence. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1105-1117. doi: 10.3934/dcdsb.2010.14.1105

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]