-
Previous Article
Hyperbolic boundary value problems with trihedral corners
- DCDS Home
- This Issue
-
Next Article
On the stability of time-domain integral equations for acoustic wave propagation
Mesh convergence for turbulent combustion
1. | Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, United States, United States, United States, United States |
2. | Department of Computer Science, ETH Zurich, Switzerland |
3. | Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States |
References:
[1] |
A. Aspden, M. Day and J. Bell, Turbulence-flame interactions in lean premixed hydrogen: Transition to the distributed burning regime,, Journal of Fluid mechanics, 680 (2011), 287.
doi: 10.1017/jfm.2011.164. |
[2] |
G. Balakrishnan, M. Smooke and F. Williams, A numerical investigation of extinction and ignition limits in laminar nonpremixed counterflowing hydrogen-air streams for both elementary and reduced chemistry,, Combustion and Flame, 102 (1995), 329.
doi: 10.1016/0010-2180(95)00031-Z. |
[3] |
J. Bell, M. Day and M. Lijewski, Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner,, Proceedings of the Combustion Institute, 34 (2013), 1173.
doi: 10.1016/j.proci.2012.07.046. |
[4] |
P. Boivin, C. Jiménez, A. L. Sánchez and F. A. Williams, A four-step reduced mechanism for syngas combustion,, Combustion and Flame, 158 (2011), 1059.
doi: 10.1016/j.combustflame.2010.10.023. |
[5] |
G. Boudier, L. Gicquel and T. Poinsot, Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors,, Combustion and Flame, 155 (2008), 196.
doi: 10.1016/j.combustflame.2008.04.013. |
[6] |
R. S. Brokaw, Viscosity of Gas Mixtures, vol. 4496,, National Aeronautics and Space Administration, (1968). Google Scholar |
[7] |
O. Colin, F. Ducros, D. Veynante and T. Poinsot, High-order finite-volume adaptive methods on locally rectangular grids,, Physics of Fluids, 12 (2000), 1843. Google Scholar |
[8] |
M. Gamba, V. A. Miller, M. G. Mungal and R. K. Hanson, Combustion characteristics of an inlet/supersonic combustor model,, in 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, (2012).
doi: 10.2514/6.2012-612. |
[9] |
M. Germano, U. Piomelli, P. Moin and W. H. Cabot, A dynamic subgrid scale eddy viscosity model,, Phys. Fluids A, 3 (1991), 1760.
doi: 10.1063/1.857955. |
[10] |
X. Gong, Turbulent Combustion Study of Scramjet Problem,, PhD thesis, (2015).
|
[11] |
A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers,, in Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences (ed. R. S. Stepleman et al.), (1983), 55.
|
[12] |
Z. Hong, D. F. Davidson and R. K. Hanson, An improved h 2/o 2 mechanism based on recent shock tube/laser absorption measurements,, Combustion and Flame, 158 (2011), 633.
doi: 10.1016/j.combustflame.2010.10.002. |
[13] |
C. J. Jachimowski, An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion, vol. 2791,, National Aeronautics and Space Administration, (1988). Google Scholar |
[14] |
G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202.
|
[15] |
S. Kawai and J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution and accuracy,, Phys. Fluids, 24 (2012).
doi: 10.1063/1.3678331. |
[16] |
M. Klein, A. Sadiki and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations,, J. Comput. Phys., 186 (2003), 652. Google Scholar |
[17] |
J. Larsson, S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl and R. Vicquelin, Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. part ii: Large eddy simulations,, Combustion and Flame, 162 (2015), 907.
doi: 10.1016/j.combustflame.2014.09.017. |
[18] |
D. K. Lilly, A proposed modification of the germano subgrid-scale closure method,, Physics of Fluids A: Fluid Dynamics (1989-1993), 4 (1992), 1989.
doi: 10.1063/1.858280. |
[19] |
J. Melvin, P. Rao, R. Kaufman, H. Lim, Y. Yu, J. Glimm and D. H. Sharp, Turbulent transport at high reynolds numbers in an ICF context,, Journal of Fluids Engineering, 136 (2014). Google Scholar |
[20] |
P. Moin, K. Squires, W. Cabot and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport,, Phys. Fluids A, 3 (1991), 2746.
doi: 10.1063/1.858164. |
[21] |
C. Pantano, Direct simulation of non-premixed flame extinction in a methane-air jet with reduced chemistry,, Journal of Fluid Mechanics, 514 (2004), 231.
doi: 10.1017/S0022112004000266. |
[22] |
P. Pepiot and H. Pitsch, Systematic reduction of large chemical mechanisms,, in 4th joint meeting of the US Sections of the Combustion Institute, (2005). Google Scholar |
[23] |
N. Peters, Turbulent Combustion,, Cambridge university press, (2000).
doi: 10.1017/CBO9780511612701. |
[24] |
H. Pitsch, Flamemaster v3. 1: A c++ computer program for 0d combustion and 1d laminar flame calculations,, 1998., (). Google Scholar |
[25] |
T. Poinsot and D. Veynante, Theoretical and Numerical Combustion,, Edwards, (2005). Google Scholar |
[26] |
S. B. Pope, Turbulent Flows,, Cambridge University Press, (2000).
doi: 10.1017/CBO9780511840531. |
[27] |
B. Rogg, Reduced Kinetic Mechanisms for Applications in Combustion Systems,, Springer Science and Business Media, (1993). Google Scholar |
[28] |
C. Segal, The Scramjet Engine: Processes and Characteristics, vol. 25,, Cambridge University Press, (2009).
doi: 10.1017/CBO9780511627019. |
[29] |
G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr et al., GRI-Mech Homepage,, Gas Research Institute, (1999). Google Scholar |
[30] |
V. Terrapon, F. Ham, R. Pecnik and H. Pitsch, A flamelet-based model for supersonic combustion,, Annual Research Briefs, (): 47. Google Scholar |
[31] |
E. Touber and N. D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble,, Theoretical and Computational Fluid Dynamics, 23 (2009), 79.
doi: 10.1007/s00162-009-0103-z. |
[32] |
A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications,, Physics of Fluids (1994-present), 16 (2004), 3670.
doi: 10.1063/1.1785131. |
[33] |
F. Williams et al., Chemical-kinetic Mechanisms for Combustion Applications,, University of California, (). Google Scholar |
[34] |
F. A. Williams, Reduced chemistry for hydrogen combustion and detonation,, A lecture presented at the First European Summer School on Hydrogen Safety, (2006). Google Scholar |
[35] |
Z.-T. Xie and I. P. Castro, Efficient generation of inflow conditions for large eddy simulation of street-scale flows,, Flow, 81 (2008), 449.
doi: 10.1007/s10494-008-9151-5. |
[36] |
R. Yetter, F. Dryer and H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics,, Combustion Science and Technology, 79 (1991), 97.
doi: 10.1080/00102209108951759. |
show all references
References:
[1] |
A. Aspden, M. Day and J. Bell, Turbulence-flame interactions in lean premixed hydrogen: Transition to the distributed burning regime,, Journal of Fluid mechanics, 680 (2011), 287.
doi: 10.1017/jfm.2011.164. |
[2] |
G. Balakrishnan, M. Smooke and F. Williams, A numerical investigation of extinction and ignition limits in laminar nonpremixed counterflowing hydrogen-air streams for both elementary and reduced chemistry,, Combustion and Flame, 102 (1995), 329.
doi: 10.1016/0010-2180(95)00031-Z. |
[3] |
J. Bell, M. Day and M. Lijewski, Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner,, Proceedings of the Combustion Institute, 34 (2013), 1173.
doi: 10.1016/j.proci.2012.07.046. |
[4] |
P. Boivin, C. Jiménez, A. L. Sánchez and F. A. Williams, A four-step reduced mechanism for syngas combustion,, Combustion and Flame, 158 (2011), 1059.
doi: 10.1016/j.combustflame.2010.10.023. |
[5] |
G. Boudier, L. Gicquel and T. Poinsot, Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors,, Combustion and Flame, 155 (2008), 196.
doi: 10.1016/j.combustflame.2008.04.013. |
[6] |
R. S. Brokaw, Viscosity of Gas Mixtures, vol. 4496,, National Aeronautics and Space Administration, (1968). Google Scholar |
[7] |
O. Colin, F. Ducros, D. Veynante and T. Poinsot, High-order finite-volume adaptive methods on locally rectangular grids,, Physics of Fluids, 12 (2000), 1843. Google Scholar |
[8] |
M. Gamba, V. A. Miller, M. G. Mungal and R. K. Hanson, Combustion characteristics of an inlet/supersonic combustor model,, in 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, (2012).
doi: 10.2514/6.2012-612. |
[9] |
M. Germano, U. Piomelli, P. Moin and W. H. Cabot, A dynamic subgrid scale eddy viscosity model,, Phys. Fluids A, 3 (1991), 1760.
doi: 10.1063/1.857955. |
[10] |
X. Gong, Turbulent Combustion Study of Scramjet Problem,, PhD thesis, (2015).
|
[11] |
A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers,, in Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences (ed. R. S. Stepleman et al.), (1983), 55.
|
[12] |
Z. Hong, D. F. Davidson and R. K. Hanson, An improved h 2/o 2 mechanism based on recent shock tube/laser absorption measurements,, Combustion and Flame, 158 (2011), 633.
doi: 10.1016/j.combustflame.2010.10.002. |
[13] |
C. J. Jachimowski, An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion, vol. 2791,, National Aeronautics and Space Administration, (1988). Google Scholar |
[14] |
G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202.
|
[15] |
S. Kawai and J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution and accuracy,, Phys. Fluids, 24 (2012).
doi: 10.1063/1.3678331. |
[16] |
M. Klein, A. Sadiki and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations,, J. Comput. Phys., 186 (2003), 652. Google Scholar |
[17] |
J. Larsson, S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl and R. Vicquelin, Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. part ii: Large eddy simulations,, Combustion and Flame, 162 (2015), 907.
doi: 10.1016/j.combustflame.2014.09.017. |
[18] |
D. K. Lilly, A proposed modification of the germano subgrid-scale closure method,, Physics of Fluids A: Fluid Dynamics (1989-1993), 4 (1992), 1989.
doi: 10.1063/1.858280. |
[19] |
J. Melvin, P. Rao, R. Kaufman, H. Lim, Y. Yu, J. Glimm and D. H. Sharp, Turbulent transport at high reynolds numbers in an ICF context,, Journal of Fluids Engineering, 136 (2014). Google Scholar |
[20] |
P. Moin, K. Squires, W. Cabot and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport,, Phys. Fluids A, 3 (1991), 2746.
doi: 10.1063/1.858164. |
[21] |
C. Pantano, Direct simulation of non-premixed flame extinction in a methane-air jet with reduced chemistry,, Journal of Fluid Mechanics, 514 (2004), 231.
doi: 10.1017/S0022112004000266. |
[22] |
P. Pepiot and H. Pitsch, Systematic reduction of large chemical mechanisms,, in 4th joint meeting of the US Sections of the Combustion Institute, (2005). Google Scholar |
[23] |
N. Peters, Turbulent Combustion,, Cambridge university press, (2000).
doi: 10.1017/CBO9780511612701. |
[24] |
H. Pitsch, Flamemaster v3. 1: A c++ computer program for 0d combustion and 1d laminar flame calculations,, 1998., (). Google Scholar |
[25] |
T. Poinsot and D. Veynante, Theoretical and Numerical Combustion,, Edwards, (2005). Google Scholar |
[26] |
S. B. Pope, Turbulent Flows,, Cambridge University Press, (2000).
doi: 10.1017/CBO9780511840531. |
[27] |
B. Rogg, Reduced Kinetic Mechanisms for Applications in Combustion Systems,, Springer Science and Business Media, (1993). Google Scholar |
[28] |
C. Segal, The Scramjet Engine: Processes and Characteristics, vol. 25,, Cambridge University Press, (2009).
doi: 10.1017/CBO9780511627019. |
[29] |
G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr et al., GRI-Mech Homepage,, Gas Research Institute, (1999). Google Scholar |
[30] |
V. Terrapon, F. Ham, R. Pecnik and H. Pitsch, A flamelet-based model for supersonic combustion,, Annual Research Briefs, (): 47. Google Scholar |
[31] |
E. Touber and N. D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble,, Theoretical and Computational Fluid Dynamics, 23 (2009), 79.
doi: 10.1007/s00162-009-0103-z. |
[32] |
A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications,, Physics of Fluids (1994-present), 16 (2004), 3670.
doi: 10.1063/1.1785131. |
[33] |
F. Williams et al., Chemical-kinetic Mechanisms for Combustion Applications,, University of California, (). Google Scholar |
[34] |
F. A. Williams, Reduced chemistry for hydrogen combustion and detonation,, A lecture presented at the First European Summer School on Hydrogen Safety, (2006). Google Scholar |
[35] |
Z.-T. Xie and I. P. Castro, Efficient generation of inflow conditions for large eddy simulation of street-scale flows,, Flow, 81 (2008), 449.
doi: 10.1007/s10494-008-9151-5. |
[36] |
R. Yetter, F. Dryer and H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics,, Combustion Science and Technology, 79 (1991), 97.
doi: 10.1080/00102209108951759. |
[1] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[2] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[3] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[4] |
Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232 |
[5] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[6] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[7] |
Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019 |
[8] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[9] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[10] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[11] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[12] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[13] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[16] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[17] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[18] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[19] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[20] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]