2016, 36(8): 4403-4450. doi: 10.3934/dcds.2016.36.4403

Hyperbolic boundary value problems with trihedral corners

1. 

Université Paris 13, CNRS, UMR 7539 LAGA, 99 av. Jean-Baptiste Clément, F-93430 Villetaneuse

2. 

Department of Mathematics, University of Michigan, Ann Arbor, Michigan

Received  May 2015 Revised  December 2015 Published  March 2016

Existence and uniqueness theorems are proved for boundary value problems with trihedral corners and distinct boundary conditions on the faces. Part I treats strictly dissipative boundary conditions for symmetric hyperbolic systems with elliptic or hidden elliptic generators. Part II treats the Bérenger split Maxwell equations in three dimensions with possibly discontinuous absorptions. The discontinuity set of the absorptions or their derivatives has trihedral corners. Surprisingly, there is almost no loss of derivatives for the Bérenger split problem. Both problems have their origins in numerical methods with artificial boundaries.
Citation: Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403
References:
[1]

S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method,, J. Comput. Phys., 134 (1997), 357. doi: 10.1006/jcph.1997.5717.

[2]

A. Majda, Coercive inequalities for non elliptic symmetric systems,, Comm. Pure Appl. Math., 28 (1975), 49.

[3]

C. Bacuta, A. L. Mazzucato, V. Nistor and L. Zikatanov, Interface and mixed boundary value problems on n-dimensional polyhedral domains,, Doc. Math, 15 (2010), 687.

[4]

A. Benoit, Problèmes Aux Limites, Optique Géométrique et Singularités,, PhD thesis, (2006).

[5]

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves,, J. Comput. Phys., 114 (1994), 185. doi: 10.1006/jcph.1994.1159.

[6]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics, volume 32 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press, (2006).

[7]

F. Colombini, V. Petkov and J. Rauch, Spectral problems for non-elliptic symmetric systems with dissipative boundary conditions,, Journal of Functional Analysis, 267 (2014), 1637. doi: 10.1016/j.jfa.2014.06.018.

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics,, Pitman (Advanced Publishing Program), (1985).

[9]

L. Halpern, S. Petit-Bergez and J. Rauch, The analysis of matched layers,, Confluentes Math., 3 (2011), 159. doi: 10.1142/S1793744211000291.

[10]

L. Halpern and J. Rauch, Bérenger/Maxwell with discontinuous absorptions: Existence, perfection, and no loss,, Séminaire Laurent Schwartz. EDP et applications, (): 2012.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-differential Operators, volume 274., Springer Science & Business Media, (2007).

[12]

A. Huang and R. Temam, The linear hyperbolic initial and boundary value problems in a domain with corners,, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1627. doi: 10.3934/dcdsb.2014.19.1627.

[13]

D. Jerison and C. E. Kenig, The Neumann problem in Lipschitz domains,, Bulletin of the American Mathematical Society, 4 (1981), 203. doi: 10.1090/S0273-0979-1981-14884-9.

[14]

D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, Journal of Functional Analysis, 130 (1995), 161. doi: 10.1006/jfan.1995.1067.

[15]

I. A. K. Kupka and S. J. Osher, On the wave equation in a multi-dimensional corner,, Comm. Pure Appl. Math., 24 (1971), 381. doi: 10.1002/cpa.3160240304.

[16]

P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators,, Comm. Pure Appl. Math., 13 (1960), 427. doi: 10.1002/cpa.3160130307.

[17]

G. Métivier and J. Rauch, Strictly dissipative nonuniqueness with corners,, In Proceeding of Conference Shocks, (2015).

[18]

J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger,, C. R. Math. Acad. Sci. Paris, 328 (1999), 847. doi: 10.1016/S0764-4442(99)80284-5.

[19]

S. J. Osher, An ill posed problem for a hyperbolic equation near a corner,, Bulletin of the American Mathematical Society, 79 (1973), 1043. doi: 10.1090/S0002-9904-1973-13324-5.

[20]

S. J. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. i,, Transactions of the American Mathematical Society, 176 (1973), 141. doi: 10.1090/S0002-9947-1973-0320539-5.

[21]

S. Petit-Bergez, Problèmes Faiblement Bien Posés: Discrétisation et Applications,, PhD thesis, (2006).

[22]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Transactions of the American Mathematical Society, 291 (1985), 167. doi: 10.1090/S0002-9947-1985-0797053-4.

[23]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, volume 133., American Mathematical Soc., (2012).

[24]

L. Sarason, On weak and strong solutions of boundary value problems,, Com. Pure and Appl. Math, 15 (1962), 237. doi: 10.1002/cpa.3160150301.

[25]

L. Sarason and J. A. Smoller, Geometrical optics and the corner problem,, Archive for Rational Mechanics and Analysis, 56 (1974), 34. doi: 10.1007/BF00279820.

[26]

M. Taniguchi, Mixed problem for wave equation in the domain with a corner,, Funkcialaj Ekvacioj, 21 (1978), 249.

[27]

M. E. Taylor, Partial Differential Equations II. Qualitative Studies of Linear Equations, volume 116 of Applied Mathematical Sciences,, Springer, (2011). doi: 10.1007/978-1-4419-7052-7.

show all references

References:
[1]

S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method,, J. Comput. Phys., 134 (1997), 357. doi: 10.1006/jcph.1997.5717.

[2]

A. Majda, Coercive inequalities for non elliptic symmetric systems,, Comm. Pure Appl. Math., 28 (1975), 49.

[3]

C. Bacuta, A. L. Mazzucato, V. Nistor and L. Zikatanov, Interface and mixed boundary value problems on n-dimensional polyhedral domains,, Doc. Math, 15 (2010), 687.

[4]

A. Benoit, Problèmes Aux Limites, Optique Géométrique et Singularités,, PhD thesis, (2006).

[5]

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves,, J. Comput. Phys., 114 (1994), 185. doi: 10.1006/jcph.1994.1159.

[6]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics, volume 32 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press, (2006).

[7]

F. Colombini, V. Petkov and J. Rauch, Spectral problems for non-elliptic symmetric systems with dissipative boundary conditions,, Journal of Functional Analysis, 267 (2014), 1637. doi: 10.1016/j.jfa.2014.06.018.

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics,, Pitman (Advanced Publishing Program), (1985).

[9]

L. Halpern, S. Petit-Bergez and J. Rauch, The analysis of matched layers,, Confluentes Math., 3 (2011), 159. doi: 10.1142/S1793744211000291.

[10]

L. Halpern and J. Rauch, Bérenger/Maxwell with discontinuous absorptions: Existence, perfection, and no loss,, Séminaire Laurent Schwartz. EDP et applications, (): 2012.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-differential Operators, volume 274., Springer Science & Business Media, (2007).

[12]

A. Huang and R. Temam, The linear hyperbolic initial and boundary value problems in a domain with corners,, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1627. doi: 10.3934/dcdsb.2014.19.1627.

[13]

D. Jerison and C. E. Kenig, The Neumann problem in Lipschitz domains,, Bulletin of the American Mathematical Society, 4 (1981), 203. doi: 10.1090/S0273-0979-1981-14884-9.

[14]

D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, Journal of Functional Analysis, 130 (1995), 161. doi: 10.1006/jfan.1995.1067.

[15]

I. A. K. Kupka and S. J. Osher, On the wave equation in a multi-dimensional corner,, Comm. Pure Appl. Math., 24 (1971), 381. doi: 10.1002/cpa.3160240304.

[16]

P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators,, Comm. Pure Appl. Math., 13 (1960), 427. doi: 10.1002/cpa.3160130307.

[17]

G. Métivier and J. Rauch, Strictly dissipative nonuniqueness with corners,, In Proceeding of Conference Shocks, (2015).

[18]

J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger,, C. R. Math. Acad. Sci. Paris, 328 (1999), 847. doi: 10.1016/S0764-4442(99)80284-5.

[19]

S. J. Osher, An ill posed problem for a hyperbolic equation near a corner,, Bulletin of the American Mathematical Society, 79 (1973), 1043. doi: 10.1090/S0002-9904-1973-13324-5.

[20]

S. J. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. i,, Transactions of the American Mathematical Society, 176 (1973), 141. doi: 10.1090/S0002-9947-1973-0320539-5.

[21]

S. Petit-Bergez, Problèmes Faiblement Bien Posés: Discrétisation et Applications,, PhD thesis, (2006).

[22]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Transactions of the American Mathematical Society, 291 (1985), 167. doi: 10.1090/S0002-9947-1985-0797053-4.

[23]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, volume 133., American Mathematical Soc., (2012).

[24]

L. Sarason, On weak and strong solutions of boundary value problems,, Com. Pure and Appl. Math, 15 (1962), 237. doi: 10.1002/cpa.3160150301.

[25]

L. Sarason and J. A. Smoller, Geometrical optics and the corner problem,, Archive for Rational Mechanics and Analysis, 56 (1974), 34. doi: 10.1007/BF00279820.

[26]

M. Taniguchi, Mixed problem for wave equation in the domain with a corner,, Funkcialaj Ekvacioj, 21 (1978), 249.

[27]

M. E. Taylor, Partial Differential Equations II. Qualitative Studies of Linear Equations, volume 116 of Applied Mathematical Sciences,, Springer, (2011). doi: 10.1007/978-1-4419-7052-7.

[1]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[2]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[3]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[4]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[5]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[6]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[7]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[8]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[9]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[10]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[11]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[12]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[13]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[14]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[15]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[16]

Juhi Jang, Ian Tice. Passive scalars, moving boundaries, and Newton's law of cooling. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1383-1413. doi: 10.3934/dcds.2016.36.1383

[17]

Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77

[18]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[19]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[20]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]